10 resultados para Charleston (W. Va.)--Maps, Manuscript.
em Publishing Network for Geoscientific
Resumo:
There are about 30 species of planktonic Foraminifera, as contrasted with the more than 4200 benthic species in the oceans of the world. Most of the planktonic species belong to the families Globigerinidae and Globorotaliidae. Of the 30 species, 9 occur in Antarctic and Subantarctic waters; however, none of these cold-water species are restricted to the Southern Ocean, except possibly the newly recognized Globorotalia cavernula (Be, 1967b). These species are distributed in broad zones of similar temperature in both the Northern and Southern Hemispheres. Hence, it is not possible to refer to these species as endemic to the Antarctic or Subantarctic, although some of them do appear in very high concentrations of 10 specimens/m**3 or more in the Antarctic regions. The plankton samples upon which the accompanying maps are based were collected between 1960 and 1965 on the research vessels Eltanin of the National Science Foundation (U.S. Antarctic Research Program), and Vema and Conrad of the Lamont Geological Observatory. All surface (0 m to 10 m) and vertical (0 m to 300 m) tows were obtained with plankton nets of uniform mesh size and material (NITEX202 = 202 µm mesh-aperture width) and were provided with flowmeters for quantitative readings of amounts of water filtered.
Resumo:
Distribution patterns of the most important pollen types from southern European and northwest African source areas for the 18,000 years B.P. time slice are reconstructed from pollen records of 14 well-dated deep-sea cores located between 37° and 9°N and compared with the modern pollen distribution in this area. It is concluded that the belt with maximum African Easterly Jet transport did not shift latitudinally during the last glacial-interglacial transition but remained at about 20°N. Furthermore, it is substantiated that the trade winds did not shift latitudinally during the last glacial-interglacial transition. This evidence is not compatible with an atmospheric circulation model that assumes a zone of surface westerlies in the northern part of northwest Africa. Trade winds during glacial episodes did, however, intensify, especially from about 36° to 24° N.
Resumo:
Aim Palaeoecological reconstructions document past vegetation change with estimates of rapid rates of changing species distribution limits that are often not matched by model simulations of climate-driven vegetation dynamics. Genetic surveys of extant plant populations have yielded new insight into continental vegetation histories, challenging traditional interpretations that had been based on pollen data. Our aim is to examine an updated continental pollen data set from Europe in the light of the new ideas about vegetation dynamics emerging from genetic research and vegetation modelling studies. Location Europe Methods: We use pollen data from the European Pollen Database (EPD) to construct interpolated maps of pollen percentages documenting change in distribution and abundance of major plant genera and the grass family in Europe over the last 15,000 years. Results: Our analyses confirm high rates of postglacial spread with at least 1000 metres per year for Corylus, Ulmus and Alnus and average rates of 400 metres per year for Tilia, Quercus, Fagus and Carpinus. The late Holocene expansions of Picea and Fagus populations in many European regions cannot be explained by migrational lag. Both taxa shift their population centres towards the Atlantic coast suggesting that climate may have played a role in the timing of their expansions. The slowest rates of spread were reconstructed for Abies. Main conclusions: The calculated rates of postglacial plant spread are higher in Europe than those from North America, which may be due to more rapid shifts in climate mediated by the Gulf Stream and westerly winds. Late Holocene anthropogenic land use practices in Europe had major effects on individual taxa, which in combination with climate change contributed to shifts in areas of abundance and dominance. The high rates of spread calculated from the European pollen data are consistent with the common tree species rapidly tracking early Holocene climate change and contribute to the debate on the consequences of global warming for plant distributions.