22 resultados para Carroll
em Publishing Network for Geoscientific
Resumo:
Because zooplankton feces represent a potentially important transport pathway of surface-derived organic carbon in the ocean, we must understand the patterns of fecal pellet abundance and carbon mobilization over a variety of spatial and temporal scales. To assess depth-specific water column variations of fecal pellets on a seasonal scale, vertical fluxes of zooplankton fecal pellets were quantified and their contribution to mass and particulate carbon were computed during 1990 at 200, 500, 1000, and 2000 m depths in the open northwestern Mediterranean Sea as part of the French-JGOFS DYFAMED Program. Depth-averaged daily fecal pellet flux was temporally variable, ranging from 3.04 * 10**4 pellets m**2/d in May to a low of 6.98 * 10**2 pellets m**2/d in September. The peak flux accounted for 50% of the integrated annual flux of fecal pellets and 62% of pellet carbon during only two months in mid-spring (April and May). Highest numerical fluxes were encountered at 1000 m, suggesting fecal pellet generation well below the euphotic zone. However, there was a trend toward lower pellet carbon with increasing depth, suggesting bacterial degradation or in situ repackaging as pellets sink through the water column. At 500 m, both the lowest pellet numerical abundance and carbon flux were evident during the spring peak. Combined with data indicating that numerical and carbon fluxes are dominated at 500 m by a distinct type of pellet found uniquely at this depth, these trends suggest the presence of an undescribed mid-water macro-zooplankton or micro-nekton community. Fecal pellet carbon flux was highest at 200 m and varied with depth independently of overall particulate carbon, which was greatest at 500 m. Morphologically distinct types of pellets dominated the numerical and carbon fluxes. Small elliptical and spherical pellets accounted for 88% of the numerical flux, while larger cylindrical pellets, although relatively rare (<10%), accounted for almost 40% of the overall pellet carbon flux. Cylindrical pellets dominated the pellet carbon flux at all depths except 500 m, where a large subtype of elliptical pellet, found only at that depth, was responsible for the majority of pellet carbon flux. Overall during 1990, fecal pellets were responsible for a depth-integrated annual average flux of 1.03 mgC/m**2/d, representing 18% of the total carbon flux. The proportion of vertical carbon flux attributed to fecal pellets varied from 3 to 35%, with higher values occurring during periods when the water column was vertically mixed. Especially during these times, fecal pellets are a critical conveyor of carbon to the deep sea in this region.
Resumo:
The feeding strategies of Calanus hyperboreus, C. glacialis, and C. finmarchicus were investigated in the high-Arctic Svalbard region (77-81 °N) in May, August, and December, including seasons with algal blooms, late- to post-bloom situations, and unproductive winter periods. Stable isotope and fatty acid trophic marker (FATM) techniques were employed together to assess trophic level (TL), carbon sources (phytoplankton vs. ice algae), and diet of the three Calanus species. In addition, population development, distribution, and nutritional state (i.e. storage lipids) were examined to estimate their population status at the time of sampling. In May and August, the vertical distribution of the three Calanus species usually coincided with the maximum algal biomass. Their stable isotope and fatty acid (FA) composition indicated that they all were essentially herbivores in May, when the algal biomass was highest. Their FA composition, however, revealed different food preferences. C. hyperboreus had high proportions of 18:4n3, suggesting that it fed mainly on Phaeocystis, whereas C. glacialis and C. finmarchicus had high proportions of 16:4n1, 16:1n7, and 20:5n3, suggesting diatoms as their major food source. Carbon sources (i.e. phytoplankton vs. ice algae) were not possible to determine solely from FATM techniques since ice-diatoms and pelagic-diatoms were characterised by the same FA. However, the enriched d13C values of C. glacialis and C. finmarchicus in May indicated that they fed both on pelagic- and ice-diatoms. Patterns in absolute FA and fatty alcohol composition revealed that diatoms were the most important food for C. hyperboreus and C. glacialis, followed by Phaeocystis, whereas diatoms, Phaeocystis and other small autotrophic flagellates were equally important food for C. finmarchicus. During periods of lower algal biomass, only C. glacialis exhibited evidence of significant dietary switch, with a TL indicative of omnivory (mean TL=2.4). Large spatial variability was observed in population development, distribution, and lipid store sizes in August. At the northernmost station at the southern margin of the Arctic Ocean, the three Calanus species had similarly low lipid stores as they had in May, suggesting that they ascended later in the year. In December, relatively lipid-rich specimens had TL similar to those during the peak productive season (TL~2.0), suggesting that they were hibernating and not feeding on the available refractory material available at that time of the year. In contrast, lipid-poor specimens in December had substantially high TL (TL=2.5), suggesting that they were active and possibly were feeding.