8 resultados para Carignan
em Publishing Network for Geoscientific
Resumo:
Elemental and Pb isotope measurements were performed on leachates and residues from surface sediments and two <50 cm cores (MC04 and MC16) collected along a NE-SW transect through Fram Strait. Geochemical and isotopic properties of residues from surface sediments define three distinct spatial domains within the Strait: 1) the easternmost edge of the Strait; 2) the eastern part of the Strait off the Svalbard margins; and 3) the western part of the Strait, influenced by supplies from Svalbard, the Nordic seas with possible contributions from northwestern Siberian margins, and sea ice and water outflow from the Arctic, respectively. Core MC16, in the third domain beneath the outflowing Arctic waters, spans the Last Glacial Maximum present interval. Sediments from this core were leached to obtain detrital (residues) and exchangeable (leachates) fractions. Detrital supplies to core MC16 are believed to originate mainly from melting of the overlying sea ice and thus can be used to document changes in Arctic sedimentary sources. Detrital 206Pb/204Pb and 208Pb/206Pb ratios illustrate two mixing trends, Trends A and B, corresponding to the pre- and post-Younger Dryas (YD) intervals, respectively. These trends represent binary mixtures with a common end-member (Canadian margins) and either a Siberian (Trend A) or Greenland (Trend B) margin end-member. The YD is marked by an isotopic excursion toward the Canadian end-member, suggesting a very active Beaufort Gyre possibly triggered by massive drainage of the Laurentide ice sheet. Pb isotope compositions of leachates, thought to represent the signature of the overlying water masses, define a unique linear trend coincident with Trend A. This suggests that water masses acquired their signature through exchange with particulate fluxes along the Canadian and Siberian continental margins.
Resumo:
Multiple-collector inductively coupled plasma mass spectrometry has been used for the precise measurement of the isotopic composition of Se in geological samples. Se is chemically purified before analysis by using cotton impregnated with thioglycollic acid. This preconcentration step is required for the removal of matrix-interfering elements for hydride generation, such as transitional metals, and also for the quantitative separation of other hydride-forming elements, such as Ge, Sb, and As. The analyte is introduced in the plasma torch with a continuous-flow hydride generation system. Instrumental mass fractionation is corrected with a "standard-sample bracketing" approach. By use of this new technique, the minimum Se required per analysis is lowered to 10 ng, which is one order of magnitude less than the amount needed for the N-TIMS technique. The estimated external precision calculated for the 82Se/76Se isotope ratio is 0.25? (2 sigma), and the data are reported as delta notation (?) relative to our internal standard (MERCK elemental standard solution). Measurements of Se isotopes are presented for samples of standard solutions and geological reference materials, such as silicate rocks, soils, and sediments. The Se isotopic composition of selected terrestrial and extraterrestrial materials are also presented. An overall Se isotope variation of 8? has been observed, suggesting that Se isotopes fractionate readily and are extremely useful tracers of natural processes.