29 resultados para Carbonic acid

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The following analyses were made some years ago, principally with the object of ascertaining the state of oxidation of the manganese in the nodules. The nodules examined came from three different localities, two of them oceanic and the third littoral. Samples marked I., II., and III. are from nodules brought up in the trawl on board the "Challenger," on 13th March 1874, in lat. 42° 42' S., long. 134° 10' E. The depth of the water was 2600 fathoms, and the temperature of the bottom water 0·2° C. The density of the bottom water was 1·02570 at 15·56° C. Being from a high southern latitude, and therefore near the source of surface aeration, the water is highly charged with atmospheric gases, especially oxygen. It contained, per litre, 18·4 c.c. of mixed nitrogen and oxygen, of which 31·81 per cent, was oxygen, and 27·33 c.c, or 53·7 milligrammes, loosely-bound carbonic acid. The position of the station is about 400 miles south-west of the nearest part of the Australian coast, and about 500 miles west of Tasmania. It was the deepest water observed in the Antarctic voyage between the Cape of Good Hope and Melbourne. The haul was a very abundant one, and a few notes which I made at the time may be interesting: -"The water was found unexpectedly deep, the bottom being red clay, with some Foraminifera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper presents data on authigenic carbonate distribution in Holocene - Upper Pleistocene deposits of the Okhotsk, Japan, East China, Philippine and South China Seas. Description of carbonate samples, their chemical and isotope compositions are given. Chemical analysis of the samples indicates that almost all authigenic carbonates are composed of calcite or magnesian calcite; and only in one case, of siderite. Oxygen isotopic composition (d18O) ranges from +37.7 to +26.1 per mil (SMOW); it is, probably, connected with different temperatures of carbonate formation. A distinct geographic regularity is traced. Decrease in d18O values is observed from the cold Okhotsk Sea to the warm South China Sea. A very wide range of carbon isotopic composition (d13C from -42 to +3.8 per mil) indicates different sources of carbonic acid required for formation of these carbonates. As a basis for carbon isotopic composition we can distinguish three sources of carbonic acid in the studied sediments: microbiological methane oxidation, organic matter destruction during sediment diagenesis, and dissolved organogenic limestone. Thus, formation of authigenic carbonates in sediments from the marginal seas of the Northwest Pacific results from: 1) sediment diagenesis, 2) methane oxidation in zones of gas anomalies, 3) their precipitation from the supersaturated by carbonates sea shoal waters of tropical sea lagoons.