867 resultados para Carbon stable isotopes

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stable isotope study of monospecific planktonic foraminifer samples recovered at Sites 541 and 543 during Deep Sea Drilling Project Leg 78A indicates a warming during the early Pliocene about 4.7 to 4.3 Ma. The changes in the late Pliocene oxygen isotope record around 2.9 to 2.7 Ma coincide with changes in the circulation pattern resulting from the closure of the Panama seaway and the beginning of the Northern Hemisphere glaciation. The Pleistocene record is characterized by 0.5 to 1.0 per mil fluctuations in the d18O record. These fluctuations reflect salinity changes, rather than temperature changes, as indicated by Globigerinoides ruber and G. sacculifer abundances. The salinity changes may be explained by a drifting of (1) the highly saline Central Water Mass of the southern Sargasso Sea, and (2) lower-salinity ocean water displaced by the northward shift of the Intertropical Convergence Zone into the Caribbean region during cooler intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern Arabian Sea is one of the few regions in the open ocean where thermocline water is severely depleted in oxygen. The intensity of this oxygen minimum zone (OMZ) has been reconstructed over the past 225,000 years using proxies for surface water productivity, water column denitrification, winter mixing, and the aragonite compensation depth (ACD). Changes in OMZ intensity occurred on orbital and suborbital timescales. Lowest O2 levels correlate with productivity maxima and shallow winter mixing. Precession-related productivity maxima lag early summer insolation maxima by ~6 kyr, which we attribute to a prolonged summer monsoon season related to higher insolation at the end of the summer. Periods with a weakened or even non-existent OMZ are characterized by low productivity conditions and deep winter mixing attributed to strong and cold winter monsoonal winds. The timing of deep winter mixing events corresponds with that of periods of climatic cooling in the North Atlantic region.