21 resultados para Capitation of images

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZooScan with ZooProcess and Plankton Identifier (PkID) software is an integrated analysis system for acquisition and classification of digital zooplankton images from preserved zooplankton samples. Zooplankton samples are digitized by the ZooScan and processed by ZooProcess and PkID in order to detect, enumerate, measure and classify the digitized objects. Here we present a semi-automatic approach that entails automated classification of images followed by manual validation, which allows rapid and accurate classification of zooplankton and abiotic objects. We demonstrate this approach with a biweekly zooplankton time series from the Bay of Villefranche-sur-mer, France. The classification approach proposed here provides a practical compromise between a fully automatic method with varying degrees of bias and a manual but accurate classification of zooplankton. We also evaluate the appropriate number of images to include in digital learning sets and compare the accuracy of six classification algorithms. We evaluate the accuracy of the ZooScan for automated measurements of body size and present relationships between machine measures of size and C and N content of selected zooplankton taxa. We demonstrate that the ZooScan system can produce useful measures of zooplankton abundance, biomass and size spectra, for a variety of ecological studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We estimated the relative contribution of atmospheric Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton delta15N (~2 per mil). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton delta15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a paucity of information on abundance, densities, and habitat selection of narwhals Monodon monoceros in the offshore pack ice of Baffin Bay, West Greenland, despite the critical importance of winter foraging regions and considerable sea ice declines in the past decades. We conducted a double-platform visual aerial survey over a narwhal wintering ground to obtain pack ice densities and develop the first fully corrected abundance estimate using point conditional mark-recapture distance sampling. Continuous video recording and digital images taken along the trackline allowed for in situ quantification of winter narwhal habitat and for the estimation of fine-scale narwhal habitat selection and habitat-specific sighting probabilities. Abundance at the surface was estimated at 3484 (coefficient of variation [CV] = 0.46) including whales missed by observers. The fully corrected abundance of narwhals was 18 044 (CV = 0.46), or approximately one-quarter of the entire Baffin Bay population. The narwhal wintering ground surveyed (~9500 km**2) had 2.4 to 3.2% open water based on estimates from satellite imagery (NASA Moderate Resolution Imaging Spectroradiometer) and 1565 digital photographic images collected on the trackline. Thus, the ~18 000 narwhals had access to 233 km**2 of open water, resulting in an average density of ~77 narwhals/km**2 open water. Narwhal sighting probability near habitats with <10% or 10 to 50% open water was significantly higher than sighting probability in habitats with >50% open water, suggesting narwhals select optimal foraging areas in dense pack ice regardless of open water availability. This study provides the first quantitative ecological data on densities and habitat selection of narwhals in pack ice foraging regions that are rapidly being altered with climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new tool for large-area photo-mosaicking (LAPM tool). This tool was developed specifically for the purpose of underwater mosaicking, and it is aimed at providing end-user scientists with an easy and robust way to construct large photo-mosaics from any set of images. It is notably capable of constructing mosaics with an unlimited number of images on any modern computer (minimum 1.30 GHz, 2 GB RAM). The mosaicking process can rely on both feature matching and navigation data. This is complemented by an intuitive graphical user interface, which gives the user the ability to select feature matches between any pair of overlapping images. Finally, mosaic files are given geographic attributes that permit direct import into ArcGIS. So far, the LAPM tool has been successfully used to construct geo-referenced photo-mosaics with photo and video material from several scientific cruises. The largest photo-mosaic contained more than 5000 images for a total area of about 105,000 m**2. This is the first article to present and to provide a finished and functional program to construct large geo-referenced photo-mosaics of the seafloor using feature detection and matching techniques. It also presents concrete examples of photo-mosaics produced with the LAPM tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Long-Term Ecological Research (LTER) observatory HAUSGARTEN, in the eastern Fram Strait, provides us the valuable ability to study the composition of benthic megafaunal communities through the analysis of seafloor photographs. This, in combination with extensive sampling campaigns, which have yielded a unique data set on faunal, bacterial, biogeochemical and geological properties, as well as on hydrography and sedimentation patterns, allows us to address the question of why variations in megafaunal community structure and species distribution exist within regional (60-110 km) and local (<4 km) scales. Here, we present first results from the latitudinal HAUSGARTEN gradient, consisting of three different stations (N3, HG-IV, S3) between 78°30'N and 79°45'N (2351 - 2788 m depth), obtained via the analysis of images acquired by a towed camera (OFOS - Ocean Floor Observation System) in 2011. We assess variability in megafaunal densities, species composition and diversity as well as biotic and biogenic habitat features, which may cause the patterns observed. While there were significant regional-scale differences in megafaunal composition and densities between the stations (N3 = 26.74 ± 0.63; HG-IV = 11.21 ± 0.25; S3 = 18.34 ± 0.39 individuals/m**2), significant local differences were only found at HG-IV. Regional-scale variations may be due to the significant differences in ice coverage at each station as well as the different quantities of protein available, whereas local-scale differences at HG-IV may be a result of variation in bottom topography or factors not yet identified.