95 resultados para Calibration data
em Publishing Network for Geoscientific
Resumo:
A mosaic of two WorldView-2 high resolution multispectral images (Acquisition dates: October 2010 and April 2012), in conjunction with field survey data, was used to create a habitat map of the Danajon Bank, Philippines (10°15'0'' N, 124°08'0'' E) using an object-based approach. To create the habitat map, we conducted benthic cover (seafloor) field surveys using two methods. Firstly, we undertook georeferenced point intercept transects (English et al., 1997). For ten sites we recorded habitat cover types at 1 m intervals on 10 m long transects (n= 2,070 points). Second, we conducted geo-referenced spot check surveys, by placing a viewing bucket in the water to estimate the percent cover benthic cover types (n = 2,357 points). Survey locations were chosen to cover a diverse and representative subset of habitats found in the Danajon Bank. The combination of methods was a compromise between the higher accuracy of point intercept transects and the larger sample area achievable through spot check surveys (Roelfsema and Phinn, 2008, doi:10.1117/12.804806). Object-based image analysis, using the field data as calibration data, was used to classify the image mosaic at each of the reef, geomorphic and benthic community levels. The benthic community level segregated the image into a total of 17 pure and mixed benthic classes.
Resumo:
Productivity at six core locations in the eastern equatorial Pacific (EEP) was reconstructed with a benthic foraminiferal transfer function. The core records show strong regionality, especially where affected by Peru margin upwelling of deeper Equatorial Undercurrent Water (EUC) (originally coming from the subantarctic). This "Peru margin" record differs from that seen along the equator where divergence leads to shallow upwelling, and it is generally inverse to that seen in cores outside the areas of equatorial upwelling. Principal components analysis shows that the main productivity pattern correlates well to the global oxygen isotope record and has lowest values during isotope stages 2 and 4. In addition to this, equatorial cores show a higher frequency pattern of variation which becomes much more pronounced during MIS 3 and 2. The reconstructions based on benthic foraminifera were tested against those from nonaccumulation rate based inorganic chemical proxies of export production. These were found to correlate well in the region influenced by Peru upwelling, and also to share common features for sites along the equator. All the nonaccumulation rate based paleotracers are consistent with one another and differ from accumulation rate derived proxies. The differences between the two classes of paleotracers may result from uncertainties in calculating actual biogenic fluxes since 230Th-normalized results conform more to those we obtained. Analysis of planktonic carbon isotope values for the EEP, and their comparison to the record of the Pacific subantarctic, indicates that the subantarctic contribution to the EUC was reduced during MIS 3 and 2.
Resumo:
This paper reports the concentrations and within-class distributions of long-chain alkenones and alkyl alkenoates in the surface waters (0-50 m) of the eastern North Atlantic, and correlates their abundance and distribution with those of source organisms and with water temperature and other environmental variables. We collected these samples of >0.8 µm particulate material from the euphotic zone along the JGOFS 20°W longitude transect, from 61°N to 24°N, during seven cruises of the UK-JGOFS Biogeochemical Ocean Flux Study (BOFS) in 1989-1991; the biogeographical range of our 53 samples extends from the cold (<10°C), nutrient-rich and highly productive subarctic waters of the Iceland Basin to the warm (>25°C) oligotrophic subtropical waters off Africa. Surface water concentrations of total alkenone and alkenoates ranged from <50 ng/l in oligotrophic waters below 40°N to 2000-4500 ng/l in high latitude E. huxleyi blooms, and were well correlated with E. huxleyi cell densities, supporting the assumption that E. huxleyi is the predominant source of these compounds in the present day North Atlantic. The within-class distribution of the C37 and C38 alkenones and C36 alkenoates varied strongly as a function of temperature, and was largely unaffected by nutrient concentration, bloom status and other surface water properties. The biosynthetic response of the source organisms to growth temperature differed between the cold (<16°C) waters above 47°N and the warmer waters to the south. In cold (<16°C) waters above 47°N, the relative amounts of alkenoates and C38 alkenones synthesized was a strong function of growth temperature, while the unsaturation ratio of the alkenones (C37 and C38) was uncorrelated with temperature. Conversely, in warm (>16°C) waters below 47°N, the relative proportions of alkenoates and alkenones synthesized remained constant with increasing temperature while the unsaturation ratios of the C37 and C38 methyl alkenones (Uk37 and Uk38Me, respectively) increased linearly. The fitted regressions of Uk37 and Uk38Me versus temperature for waters >16°C were both highly significant (r**2 > 0.96) and had identical slopes (0.057) that were 50% higher than the slope (0.034) of the temperature calibration of Uk37 reported by Prahl and Wakeham (1987; doi:10.1038/330367a0) over the same temperature range. These observations suggest either a physiological adjustment in biochemical response to growth temperature above a 16-17°C threshold and/or variation between different E. huxleyi strains and/or related species inhabiting the cold and warm water regions of the eastern North Atlantic. Using our North Atlantic data set, we have produced multivariate temperature calibrations incorporating all major features of the alkenone and alkenoate data set. Predicted temperatures using multivariate calibrations are largely unbiased, with a standard error of approximately ±1°C over the entire data range. In contrast, simpler calibration models cannot adequately incorporate regional diversity and nonlinear trends with temperature. Our results indicate that calibrations based upon single variables, such as Uk37, can be strongly biased by unknown systematic errors arising from natural variability in the biosynthetic response of the source organisms to growth temperature. Multivariate temperature calibration can be expected to give more precise estimates of Integrated Production Temperatures (IPT) in the sedimentary record over a wider range of paleoenvironmental conditions, when derived using a calibration data set incorporating a similar range of natural variability in biosynthetic response.
Resumo:
We present a detailed palaeoclimate analysis of the Middle Miocene (uppermost Badenian-lowermost Sarmatian) Schrotzburg locality in S Germany, based on the fossil macro- and micro-flora, using four different methods for the estimation of palaeoclimate parameters: the coexistence approach (CA), leaf margin analysis (LMA), the Climate-Leaf Analysis Multivariate Program (CLAMP), as well as a recently developed multivariate leaf physiognomic approach based on an European calibration dataset (ELPA). Considering results of all methods used, the following palaeoclimate estimates seem to be most likely: mean annual temperature ~15-16°C (MAT), coldest month mean temperature ~7°C (CMMT), warmest month mean temperature between 25 and 26°C, and mean annual precipiation ~1,300 mm, although CMMT values may have been colder as indicated by the disappearance of the crocodile Diplocynodon and the temperature thresholds derived from modern alligators. For most palaeoclimatic parameters, estimates derived by CLAMP significantly differ from those derived by most other methods. With respect to the consistency of the results obtained by CA, LMA and ELPA, it is suggested that for the Schrotzburg locality CLAMP is probably less reliable than most other methods. A possible explanation may be attributed to the correlation between leaf physiognomy and climate as represented by the CLAMP calibration data set which is largely based on extant floras from N America and E Asia and which may be not suitable for application to the European Neogene. All physiognomic methods used here were affected by taphonomic biasses. Especially the number of taxa had a great influence on the reliability of the palaeoclimate estimates. Both multivariate leaf physiognomic approaches are less influenced by such biasses than the univariate LMA. In combination with previously published results from the European and Asian Neogene, our data suggest that during the Neogene in Eurasia CLAMP may produce temperature estimates, which are systematically too cold as compared to other evidence. This pattern, however, has to be further investigated using additional palaeofloras.
Resumo:
Continental and marine conditions during the last millennium off Porto, Portugal (the southern pole of the North Atlantic Oscillation, NAO), are reconstructed from a sediment archive through a high-resolution multiproxy study and instrumental evidence. Results show multidecadal variability and sea surface temperatures (SSTs) that correlate well with previously published land and sea-based Northern Hemisphere temperature records, and appear to be responding to long-term solar insolation variability. Precipitation was negatively correlated with the NAO, whereas strong flooding events occurred at times of marked climate cooling (AD 1100-1150 and 1400-1470) and transitions in solar activity. AD 1850 marks a major shift in the phytoplankton community associated with a decoupling of d18O records of 3 planktonic foraminifera species. These changes are interpreted as a response to a reduction in the summer and/or annual upwelling and more frequent fall-winter upwelling-like events. This shift's coincidence with a decrease in SST and the increase in coherence between our data and the Atlantic Multidecadal Oscillation (AMO) confirms the connection of the upwelling variability to the North Atlantic Ocean's surface and thermohaline circulation on a decadal scale. The disappearance of this agreement between the AMO and our records beyond AD 1850 and its coincidence with the beginning of the recent rise in atmospheric CO2 supports the hypothesis of a strong anthropogenic effect on the last ~150 yr of the climate record. Furthermore, it raises an important question of the use of instrumental records as the sole calibration data set for climate reconstructions, as these may not provide the best analogue for climate beyond AD 1730.
Resumo:
Sea-surface temperature (SST) estimates in the sediment core MD01-2390 based on planktonic foraminiferal species abundances using five different transfer function techniques suggest nearly unchanged or unusually higher temperatures in the tropical southern South China Sea (SCS) during the Last Glacial Maximum (LGM) relative to modern temperatures. These results are in contrast to substantial cooling of 2-5 °C inferred by geochemical (Uk'37, Mg/Ca ratios) and terrestrial proxies from the western tropical Pacific region. Using multivariate statistics we show that the glacial southern SCS harboured unique planktonic foraminiferal assemblages that have no modern analogs. Analyses of faunal variation through the core reveal that planktonic foraminiferal assemblages responded to temperature changes inferred from Mg/Ca data but that this signal is subdued by superimposed variations in the relative abundance of Pulleniatina obliquiloculata and Neogloboquadrina pachyderma (dextral). These species occur in glacial samples at proportions that are not observed in the calibration data set. The glacial high abundance of N. pachyderma (dextral) are interpreted to reflect a seasonal (winter) inflow of cold surface water from the northeast via the Bashi Strait due to the combined effects of an intensified winter monsoon, a southward shift of the polar front and the eastward migration of the Kuroshio Current. In contrast, processes controlling the high relative abundances of P. obliquiloculata during the LGM may be unique to the southern SCS. We propose a scenario involving a stronger (winter) mixing or enhanced upwelling due to an intensified winter monsoon that prevented shallow-dwelling, warm indicators to establish larger populations during the LGM. Our results indicate that a no-analog behaviour of planktonic foraminifera faunas is responsible for the warm glacial conditions in this part of the western Pacific warm pool as implied by foraminiferal transfer functions and that a more significant surface cooling in the region as implied by terrestrial and geochemical (Mg/Ca ratios; alkenone unsaturation index) marine proxies is a more likely scenario.
Resumo:
In spite of the important role played by the Southern Ocean in global climate, the few existing paleoceanographic records in the east Pacific sector do not extend beyond one glacial-interglacial cycle, hindering circumpolar comparison of past sea surface temperature (SST) evolution in the Southern Ocean. Here we present three alkenone-based Pleistocene SST records from the subantarctic and subtropical Pacific. We use a regional core top calibration data set to constrain the choice of calibrations for paleo SST estimation. Our core top data confirm that the alkenone-based UK37 and UK'37 values correlate linearly with the SST, in a similar fashion as the most commonly used laboratory culture-based calibrations even at low temperatures (down to ~1°C), rendering these calibrations appropriate for application in the subantarctic Pacific. However, these alkenone indices yield diverging temporal trends in the Pleistocene SST records. On the basis of the better agreement with d18O records and other SST records in the subantarctic Southern Ocean, we propose that the UK37 is a better index for SST reconstruction in this region than the more commonly used UK'37 index. The UK37-derived SST records suggest glacial cooling of ~8°C and ~4°C in the subantarctic and subtropical Pacific, respectively. Such extent of subantarctic glacial cooling is comparable to that in other sectors of the Southern Ocean, indicating a uniform circumpolar cooling during the Pleistocene. Furthermore, our SST records also imply massive equatorward migrations of the Antarctic Circumpolar Current (ACC) frontal systems and an enhanced transport of ACC water to lower latitudes during glacials by the Peru-Chile Current.
Resumo:
Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6 per mil). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r**2 = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m**-2 yr**-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r? which was 0.98 for the productivity dimension and 0.96 for the oxygen dimension. These high coefficients indicate that both environmental variables are strongly imbedded in the faunal data matrix. Analysis of the beta regression coefficients shows that the environmental signals are carried by groups of taxa which are consistent with previous work characterizing benthic foraminiferal responses to productivity and bottom water oxygen. The results of this study suggest that benthic foraminiferal assemblages can be used for quantitative reconstruction of surface ocean productivity and bottom water oxygen concentrations if suitable surface sediment calibration data sets are developed and appropriate means for detecting no-analog samples are found.
Resumo:
An expanded Cariaco Basin 14C chronology is tied to 230Th-dated Hulu Cave speleothem records in order to provide detailed marine-based 14C calibration for the past 50,000 years. The revised, high-resolution Cariaco 14C calibration record agrees well with data from 230Th-dated fossil corals back to 33 ka, with continued agreement despite increased scatter back to 50 ka, suggesting that the record provides accurate calibration back to the limits of radiocarbon dating. The calibration data document highly elevated Delta14C during the Glacial period. Carbon cycle box model simulations show that the majority of observed Delta14C change can be explained by increased 14C production. However, from 45 to 15 ka, Delta14C remains anomalously high, indicating that the distribution of radiocarbon between surface and deep ocean reservoirs was different than it is today. Additional observations of the magnitude, spatial extent and timing of deep ocean Delta14C shifts are critical for a complete understanding of observed Glacial Delta14C variability.
Resumo:
The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.
Resumo:
A reliable assessment of relevant substance flows is very important for environmental risk assessments and efficiency analysis of measures to reduce or avoid emissions of micropollutants like drugs to water systems. Accordingly, a detailed preparation of monitoring campaigns should include an accuracy check for the sampling configuration to prove the reliability of the monitoring results and the subsequent data processing. The accuracy of substance flow analyses is expected to be particularly weak for substances having high short-term variations of concentrations in sewage. This is especially the case linked to the observation of substance flows close to source in waste water systems. The verification of a monitoring configuration in a hospital sewer in Luxembourg is in the centre of interest of the case study presented here. A tracer test in the sewer system under observation is an essential element of the suggested accuracy check and provides valuable information for an uncertainty analysis. The results illustrate the importance of accuracy checks as an essential element of the preparation of monitoring campaigns. Moreover the study shows that continuous flow proportional sampling enables a representative observation of short-term peak loads of the iodinated x-ray contrast media iobitridol close to source.
Resumo:
Oceanic anoxic event 2 (OAE-2) occurring during the Cenomanian/Turonian (C/T) transition is evident from a globally recognized positive stable carbon isotopic excursion and is thought to represent one of the most extreme carbon cycle perturbations of the last 100 Myr. However, the impact of this major perturbation on and interaction with global climate remains unclear. Here we report new high-resolution records of sea surface temperature (SST) based on TEX86 and d 18O of excellently preserved planktic foraminifera and stable organic carbon isotopes across the C/T transition from black shales located offshore Suriname/French Guiana (Demerara Rise, Ocean Drilling Program Leg 207 Site 1260) and offshore Senegal (Cape Verde Basin, Deep Sea Drilling Project Leg 41 Site 367). At Site 1260, where both SST proxy records can be determined, a good match between conservative SST estimates from TEX86 and d 18O is observed. We find that late Cenomanian SSTs in the equatorial Atlantic Ocean (33°C) were substantially warmer than today (27°-29°C) and that the onset of OAE-2 coincided with a rapid shift to an even warmer (35°-36°C) regime. Within the early stages of the OAE a marked (4°C) cooling to temperatures lower than pre-OAE conditions is observed. However, well before the termination of OAE-2 the warm regime was reestablished and persisted into the Turonian. Our findings corroborate the view that the C/T transition represents the onset of the interval of peak Cretaceous warmth. More importantly, they are consistent with the hypotheses that mid-Cretaceous warmth can be attributed to high levels of atmospheric carbon dioxide (CO2) and that major OAEs were capable of triggering global cooling through the negative feedback effect of organic carbon-burial-led CO2 sequestration. Evidently, however, the factors that gave rise to the observed shift to a warmer climate regime at the onset of OAE-2 were sufficiently powerful that they were only briefly counterbalanced by the high rates of carbon burial attained during even the most extreme interval of organic carbon burial in the last 100 Myr.
Resumo:
The oceans play a critical role in the Earth's climate, but unfortunately, the extent of this role is only partially understood. One major obstacle is the difficulty associated with making high-quality, globally distributed observations, a feat that is nearly impossible using only ships and other ocean-based platforms. The data collected by satellite-borne ocean color instruments, however, provide environmental scientists a synoptic look at the productivity and variability of the Earth's oceans and atmosphere, respectively, on high-resolution temporal and spatial scales. Three such instruments, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) onboard ORBIMAGE's OrbView-2 satellite, and two Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the National Aeronautic and Space Administration's (NASA) Terra and Aqua satellites, have been in continuous operation since September 1997, February 2000, and June 2002, respectively. To facilitate the assembly of a suitably accurate data set for climate research, members of the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project and SeaWiFS Project Offices devote significant attention to the calibration and validation of these and other ocean color instruments. This article briefly presents results from the SIMBIOS and SeaWiFS Project Office's (SSPO) satellite ocean color validation activities and describes the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), a state-of-the-art system for archiving, cataloging, and distributing the in situ data used in these activities.