775 resultados para Calendula officinalis

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suporting Information 1; Herbarium Corallina officinalis samples of the Natural History Museum (BM) analysed for the present study. Where the same NHM barcodes are provided for more than one sample, multiple samples were present under the same barcode in the herbarium. (-) indicates samples were not barcoded in the NHM (BM) system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B Body wet weight and mantle length of juvenile Sepia officinalis were monitored over a peroid of five weeks. The animals had hatched in our aquarium system in Bremerhaven, Germany at 16°C and were descendants of individuals collected in the Oosterschelde estuary, Netherlands. Animals were kept in natural sea water at 10 or 17°C and fed small live shrimp (Palaemonetes varians) ad libitum daily. At the end of the experiment some animals kept at 17°C were sacrificed using ethanol. Haemolymph was withdrawn from the head vein using syringe and needle. Haemolymph samples were stored at -20°C until Na+, Cl-, K+, Mg2+, Ca2+ and SO42- concentrations were determined using ion chromatography. Mean body weight more that tripled at 17°C during the investigation period, while growth was impared by exposue to 10°C. Haemolymph ion concentrations were similar to those in sea water, except for sulphate. The concentration of this ion in the haemolymph was more that ten times lower than in sea water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here, we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues; as in teleost fish, epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a Pco2 between 0.2 and 0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization, and vital dye-staining techniques. We found one group of cells that is recognized by concavalin A and MitoTracker, which also expresses Na+/H+ exchangers (NHE3) and Na+-K+-ATPase. Similar to findings obtained in teleosts, these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE-based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy, suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa, which were identified as powerful acid-base regulators during hypercapnic challenges, already exhibit strong acid-base regulatory abilities during embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the eurythermal cuttlefish Sepia officinalis, performance depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation and adaptation that could be crucial for the cuttlefish's competitive success in variable environments. Two genetically distinct cuttlefish populations were acclimated to 11, 16 and 21°C. Subsequently, skinned and permeabilised heart fibres were used to assess mitochondrial functioning by means of high-resolution respirometry and a substrate-inhibitor protocol, followed by measurements of cardiac citrate synthase and cytosolic enzyme activities. Temperate English Channel cuttlefish had lower mitochondrial capacities but larger hearts than subtropical Adriatic cuttlefish. Warm acclimation to 21°C decreased mitochondrial complex I activity in Adriatic cuttlefish and increased complex IV activity in English Channel cuttlefish. However, compensation of mitochondrial capacities did not occur during cold acclimation to 11°C. In systemic hearts, the thermal sensitivity of mitochondrial substrate oxidation was high for proline and pyruvate but low for succinate. Oxygen efficiency of catabolism rose as temperature changed from 11 to 21°C via shifts to oxygen-conserving oxidation of proline and pyruvate and via reduced relative proton leak. The changes observed for substrate oxidation, mitochondrial complexes, relative proton leak and heart mass improve energetic efficiency and essentially seem to extend tolerance to high temperatures and reduce associated tissue hypoxia. We conclude that cuttlefish sustain cardiac performance and, thus, systemic oxygen delivery over short- and long-term changes of temperature and environmental conditions by multiple adjustments in cellular and mitochondrial energetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, leading to an increase in egg surface while the interactive effects suggested a limited plasticity of the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid (>3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both temperatures. This phenomenon of hypercalcification is limited to only a number of animals but does not guarantee functional performance and calls for better mechanistic understanding of calcification processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future atmospheric CO2 levels will most likely have complex consequences for marine organisms, particulary photosynthetic calcifying organisms. Corallina officinalis L. is an erect calcifying macroalga found in the inter- and subtidal regions of temperate rocky coastlines and provides important substrate and refugia for marine meiofauna. The main goal of the current study was to determine the physiological responses of C. officinalis to increased CO2 concentrations expected to occur within the next century and beyond. Our results show that growth and production of inorganic material decreased under high CO2 levels, while carbonic anhydrase activity was stimulated and negatively correlated to algal inorganic content. Photosynthetic efficiency based on oxygen evolution was also negatively affected by increased CO2. The results of this study indicate that C. officinalis may become less competitive under future CO2 levels, which could result in structural changes in future temperate intertidal communities.