296 resultados para Calcite dissolution rate
em Publishing Network for Geoscientific
Resumo:
The large discrepancy between field and laboratory measurements of mineral reaction rates is a long-standing problem in earth sciences, often attributed to factors extrinsic to the mineral itself. Nevertheless, differences in reaction rate are also observed within laboratory measurements, raising the possibility of intrinsic variations as well. Critical insight is available from analysis of the relationship between the reaction rate and its distribution over the mineral surface. This analysis recognizes the fundamental variance of the rate. The resulting anisotropic rate distributions are completely obscured by the common practice of surface area normalization. In a simple experiment using a single crystal and its polycrystalline counterpart, we demonstrate the sensitivity of dissolution rate to grain size, results that undermine the use of "classical" rate constants. Comparison of selected published crystal surface step retreat velocities (Jordan and Rammensee, 1998) as well as large single crystal dissolution data (Busenberg and Plummer, 1986) provide further evidence of this fundamental variability. Our key finding highlights the unsubstantiated use of a single-valued "mean" rate or rate constant as a function of environmental conditions. Reactivity predictions and long-term reservoir stability calculations based on laboratory measurements are thus not directly applicable to natural settings without a probabilistic approach. Such a probabilistic approach must incorporate both the variation of surface energy as a general range (intrinsic variation) as well as constraints to this variation owing to the heterogeneity of complex material (e.g., density of domain borders). We suggest the introduction of surface energy spectra (or the resulting rate spectra) containing information about the probability of existing rate ranges and the critical modes of surface energy.
Resumo:
Dissolution rates of calcareous ooze were measured for samples from Deep Sea Drilling Project (DSDP) Site 506, which is in the area of the Galapagos Spreading Center. Using the free-drift method, measurements were carried out at 25 °C and atmospheric pressure. No significant difference in dissolution rates was found among the samples from three holes. However, in the present samples, the concentration of carbonate ion in seawater that is in equilibrium with calcite is 20 to 30% greater than is the case with synthetic calcite. That is, the dissolution rate of calcite under nearequilibrium conditions is greater than that of either synthetic calcite or sediments from the central Pacific (Morse, 1978). These results are consistent with field evidence indicating that the calcium carbonate compensation depth in the Galapagos region is shallower than in most other Pacific regions (Berger et al., 1976).
Resumo:
Acidification of the oceans by increasing anthropogenic CO2 emissions will cause a decrease in biogenic calcification and an increase in carbonate dissolution. Previous studies have suggested that carbonate dissolution will occur in polar regions and in the deep sea where saturation state with respect to carbonate minerals (Omega) will be <1 by 2100. Recent reports demonstrate nocturnal carbonate dissolution of reefs, despite a Omega a (aragonite saturation state) value of >1. This is probably related to the dissolution of reef carbonate (Mg-calcite), which is more soluble than aragonite. However, the threshold of Omega for the dissolution of natural sediments has not been clearly determined. We designed an experimental dissolution system with conditions mimicking those of a natural coral reef, and measured the dissolution rates of aragonite in corals, and of Mg-calcite excreted by other marine organisms, under conditions of Omega a > 1, with controlled seawater pCO2. The experimental data show that dissolution of bulk carbonate sediments sampled from a coral reef occurs at Omega a values of 3.7 to 3.8. Mg-calcite derived from foraminifera and coralline algae dissolves at Omega a values between 3.0 and 3.2, and coralline aragonite starts to dissolve when Omega a = 1.0. We show that nocturnal carbonate dissolution of coral reefs occurs mainly by the dissolution of foraminiferans and coralline algae in reef sediments.
Resumo:
Eight-month-old blocks of the coral Porites lobata colonized by natural Hawaiian euendolithic and epilithic communities were experimentally exposed to two different aqueous pCO2 treatments, 400 ppmv and 750 ppmv, for 3 months. The chlorophyte Ostreobium quekettii dominated communities at the start and at the end of the experiment (65-90%). There were no significant differences in the relative abundance of euendolithic species, nor were there any differences in bioeroded area at the surface of blocks (27%) between pCO2 treatments. The depth of penetration of filaments of O. quekettii was, however, significantly higher under 750 ppmv (1.4 mm) than under 400 ppmv (1 mm). Consequently, rates of carbonate dissolution measured under elevated pCO2 were 48% higher than under ambient pCO2 (0.46 kg CaCO3 dissolved m2/a versus 0.31 kg /m2/a). Thus, biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.
Resumo:
Finding the ideal deep-sea CaCO3 dissolution proxy is essential for quantifying the role of the marine carbonate system in regulating atmospheric pCO2 over millennia. We explore the potential of using the Globorotalia menardii fragmentation index (MFI) and size-normalized foraminifer shell weight (SNSW) as complementary indicators of deep-sea CaCO3 dissolution. MFI has strong correlations with bottom water [CO3]2-, modeled estimates of percent CaCO3 dissolved, and Mg/Ca in Pulleniatina obliquiloculata in core top samples along a depth transect on the Ontong Java Plateau (OJP) where surface ocean temperature variation is minimal. SNSW of P. obliquiloculata and Neogloboquadrina dutertrei have weak correlations with MFI-based percent dissolved, Mg/Ca in P. obliquiloculata shells and bottom water [CO3]2- on the OJP. In core top samples from the eastern equatorial Pacific (EEP), SNSW of P. obliquiloculata has moderate to strong correlations with both MFI-based percent CaCO3 dissolved estimates and surface ocean environmental parameters. SNSW of N. dutertrei shells shows a latitudinal distribution in the EEP and a moderately strong correlation with MFI-based percent dissolved estimates when samples from the equatorial part of the region are excluded. Our results suggest that there may potentially be multiple genotypes of N. dutertrei in the EEP which may be reflected in their shell weight. MFI-based percent CaCO3 dissolved estimates have no quantifiable relationship with any surface ocean environmental parameter in the EEP. Thus MFI acts as a reliable quantitative CaCO3 dissolution proxy insensitive to environmental biases within calcification waters of foraminifers.
Resumo:
Anthropogenic ocean acidification is likely to have negative effects on marine calcifying organisms, such as shelled pteropods, by promoting dissolution of aragonite shells. Study of shell dissolution requires an accurate and sensitive method for assessing shell damage. Shell dissolution was induced through incubations in CO2 enriched seawater for between 4 and 14 days. We describe a procedure that allows the level of dissolution to be assessed and classified into three main types: Type I with partial dissolution of the prismatic layer; Type II with exposure of underlying crossed-lamellar layer, and Type III, where crossed-lamellar layer shows signs of dissolution. Levels of dissolution showed a good correspondence to the incubation conditions, with the most severe damage found in specimens held for 14 d in undersaturated condition (Ohm ~ 0.8). This methodology enables the response of small pelagic calcifiers to acidified conditions to be detected at an early stage, thus making pteropods a valuable bioindicator of future ocean acidification.
Resumo:
We present in situ microelectrode measurements of sediment formation factor and porewater oxygen and pH from six stations in the North Atlantic varying in depth from 2159 to 5380 m. A numerical model of the oxygen data indicates that fluxes of oxygen to the sediments are as much as an order of magnitude higher than benthic chamber flux measurements previously reported in the same area. Model results require dissolution driven by metabolic CO2 production within the sediments to explain the pH data; even at the station with the most undersaturated bottom waters >60% of the calcite dissolution occurs in response to metabolic CO2. Aragonite dissolution alone cannot provide the observed buffering of porewater pH, even at the shallowest station. A sensitivity test of the model that accounts for uncertainties in the bottom water saturation state and the stoichiometry between oxygen consumption and CO2 production during respiration constrains the dissolution rate constant for calcite to between 3 and 30% day**-1, in agreement with earlier in situ determinations of the rate constant. Model results predict that over 35% of the calcium carbonate rain to these sediments dissolves at all stations, confirmed by sediment trap and CaCO3 accumulation data.
Resumo:
In this study we investigated the relations between community calcification of an entire coral reef in the northern Red Sea and annual changes in temperature, aragonite saturation and nutrient loading over a two year period. Summer (April-October) and winter (November-March) average calcification rates varied between 60 ± 20 and 30 ± 20 mmol·m-2·d-1, respectively. In general, calcification increased with temperature and aragonite saturation state of reef water with an apparent effect of nutrients, which is in agreement with most laboratory studies and in situ measurements of single coral growth rates. The calcification rates we measured in the reef correlated remarkably well with precipitation rates of inorganic aragonite calculated for the same temperature and degree of saturation ranges using empirical equations from the literature. This is a very significant finding considering that only a minute portion of reef calcification is inorganic. Hence, these relations could be used to predict the response of coral reefs to ocean acidification and warming.
Resumo:
Ocean acidification (OA) is expected to reduce the net ecosystem calcification (NEC) rates and overall accretion of coral reef ecosystems. However, despite the fact that sediments are the most abundant form of calcium carbonate (CaCO3) in coral reef ecosystems and their dissolution may be more sensitive to OA than biogenic calcification, the impacts of OA induced sediment dissolution on coral reef NEC rates and CaCO3 accretion are poorly constrained. Carbon dioxide addition and light attenuation experiments were performed at Heron Island, Australia in an attempt to tease apart the influence of OA and organic metabolism (e.g. respiratory CO2 production) on CaCO3 dissolution. Overall, CaCO3 dissolution rates were an order of magnitude more sensitive to elevated CO2 and decreasing seawater aragonite saturation state (Omega Ar; 300-420% increase in dissolution per unit decrease in Omega Ar) than published reductions in biologically mediated calcification due to OA. Light attenuation experiments led to a 70% reduction in net primary production (NPP), which subsequently induced an increase in daytime (115%) and net diel (375%) CaCO3 dissolution rates. High CO2 and low light acted in synergy to drive a 575% increase in net diel dissolution rates. Importantly, disruptions to the balance of photosynthesis and respiration (P/R) had a significant effect on daytime CaCO3 dissolution, while average water column ?Ar was the main driver of nighttime dissolution rates. A simple model of platform-integrated dissolution rates was developed demonstrating that seasonal changes in photosynthetically active radiation (PAR) can have an important effect on platform integrated CaCO3 sediment dissolution rates. The considerable response of CaCO3 sediment dissolution to elevated CO2 means that much of the response of coral reef communities and ecosystems to OA could be due to increases in CaCO3 sediment and framework dissolution, and not decreases in biogenic calcification.
Resumo:
Mineralization of organic matter and the subsequent dissolution of calcite were simulated for surface sediments of the upper continental slope off Gabon by using microsensors to measure O2, pH, pCO2 and Ca2+ (in situ), pore-water concentration profiles of NO3-, NH4+, Fe2+, and Mn2+ and SO42- (ex situ), as well as sulfate reduction rates derived from incubation experiments. The transport and reaction model CoTReM was used to simulate the degradation of organic matter by O2, [NO3]-, Fe(OH)3 and [SO4]2-, reoxidation reactions involving Fe2+ and Mn2+, and precipitation of FeS. Model application revealed an overall rate of organic matter mineralization amounting to 50 µmol C cm**-2 yr**-1, of which 77% were due to O2, 17% to [NO3]- and 3% to Fe(OH)3 and 3% to [SO4]2-. The best fit for the pH profile was achieved by adapting three different dissolution rate constants of calcite ranging between 0.01 and 0.5% d-1 and accounting for different calcite phases in the sediment. A reaction order of 4.5 was assumed in the kinetic rate law. A CaCO3 flux to the sediment was estimated to occur at a rate of 42 g m**-2 yr**-1 in the area of equatorial upwelling. The model predicts a redissolution flux of calcite amounting to 36 g m**-2 yr**-1, thus indicating that ~90% of the calcite flux to the sediment is redissolved.
Resumo:
Observations of carbonate preservation in marine sediments have long been used to infer changes in ocean circulation or biogenic production. When combined with measures of organic carbon rain and calcite accumulation rates, quantitative estimates of changes in preservation can reveal variation in biogenic fluxes, the org. C to calcite flux ratio and saturation state of bottom waters. Here we develop quantitative dissolution proxies for mid to higher latitudes based on foraminiferal test fragmentation. Examining surface sediments, we find that fragmentation in G. bulloides and G. truncatulinoides is linear with increasing seabed dissolution rate and can be used to quantify changes in carbonate preservation. G. truncatulinoides shows a constant relationship of fragmentation to dissolution. However, we observe that, although linear to dissolution rate, the fragmentation in G. bulloides depends on which morphotype is present. Other species, such as G. inflata, have complex responses to increasing dissolution and are less direct preservation indicators.
Resumo:
The calcite compensation depth (CCD) fluctuates as a result of changes in the water-mass system, thereby producing a distinct dissolution pattern. Differential dissolution changes the composition of the foraminiferal assemblages, reflecting the depositional environment in respect to the fluctuating CCD. The dissolution pattern for the comparatively shallow Site 541 on the Barbados Ridge indicates a depositional environment mostly above the CCD, but below the foraminiferal lysocline during the late Miocene to early Pleistocene. In contrast, sediments of the deeper-water Site 543 indicate a depositional environment above the CCD during the late Pliocene to early Pleistocene only. Furthermore, similarities in the dissolution pattern of corresponding time intervals of Site 541 (represented by superimposed faulted intervals termed Tectonic Units A and B) are recognizable. Sediments deposited clearly above the foraminiferal lysocline are rare
Resumo:
The 87Sr/86Sr ratios and Sr concentrations in sediment and pore fluids are used to evaluate the rates of calcite recrystallization at ODP Site 807A on the Ontong Java Plateau, an 800-meter thick section of carbonate ooze and chalk. A numerical model is used to evaluate the pore fluid chemistry and Sr isotopes in an accumulating section. The deduced calcite recrystallization rate is 2% per million years (%/Myr) near the top of the section and decreases systematically in older parts of the section such that the rate is close to 0.1/age (in years). The deduced recrystallization rates have important implications for the interpretation of Ca and Mg concentration profiles in the pore fluids. The effect of calcite recrystallization on pore fluid chemistry is described by the reaction length, L, which varies by element, and depends on the concentration in pore fluid and solid. When L is small compared to the thickness of the sedimentary section, the pore fluid concentration is controlled by equilibrium or steady-state exchange with the solid phase, except within a distance L of the sediment-water interface. When L is large relative to the thickness of sediment, the pore fluid concentration is mostly controlled by the boundary conditions and diffusion. The values of L for Ca, Sr, and Mg are of order 15, 150, and 1500 meters, respectively. L_Sr is derived from isotopic data and modeling, and allows us to infer the values of L_Ca and L_Mg. The small value for L_Ca indicates that pore fluid Ca concentrations, which gradually increase down section, must be equilibrium values that are maintained by solution-precipitation exchange with calcite and do not reflect Ca sources within or below the sediment column. The pore fluid Ca measurements and measured alkalinity allow us to calculate the in situ pH in the pore fluids, which decreases from 7.6 near the sediment-water interface to 7.1+/-0.1 at 400-800 mbsf. While the calculated pH values are in agreement with some of the values measured during ODP Leg 130, most of the measurements are artifacts. The large value for L_Mg indicates that the pore fluid Mg concentrations at 807A are not controlled by calcite-fluid equilibrium but instead are determined by the changing Mg concentration of seawater during deposition, modified by aqueous diffusion in the pore fluids. We use the pore fluid Mg concentration profile at Site 807A to retrieve a global record for seawater Mg over the past 35 Myr, which shows that seawater Mg has increased rapidly over the past 10 Myr, rather than gradually over the past 60 Myr. This observation suggests that the Cenozoic rise in seawater Mg is controlled by continental weathering inputs rather than by exchange with oceanic crust. The relationship determined between reaction rate and age in silicates and carbonates is strikingly similar, which suggests that reaction affinity is not the primary determinant of silicate dissolution rates in nature.