9 resultados para CUCUMIS-MELO L.

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Remains of diatoms, molluscs, ostracods, foraminifera and pollen exines preserved in the sediments of Lago d'Averno, a volcanic lake in the Phlegrean Fields west of Naples, allowed us to reconstruct the changes in the ecological conditions of the lake and of the vegetation around it for the period from 800 BC to 800 AD. Lago d'Averno was at first a freshwater lake, temporarily influenced by volcanic springs. Salinity increased slowly during Greek times as a result of subsidence of the surrounding land. Saline conditions developed only after the lake was connected with the sea by a canal, when Portus Julius was built in 37 BC. The first post-Roman period of uplift ended with a short freshwater phase during the 7th century after Christ. Deciduous oakwoods around the lake was transformed into a forest of evergreen oaks in Greek times and thrived there - apparently almost uninfluenced by man - until it was felled, when the Avernus was incorporated into the new Roman harbour in 37 BC, to construct a shipyard and other military buildings there. Land-use was never more intense than during Roman times and weakest in Greek and Early Roman times, when the Avernus was considered a holy place, the entrance to the underworld.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abundant and diverse polycystine radiolarian faunas from ODP Leg 181, Site 1123 (0-1.2 Ma at ~21 kyr resolution) and Site 1124 (0-0.6 Ma, ~5 kyr resolution, with a disconformity between 0.42-0.22 Ma) have been used to infer Pleistocene-Holocene paleoceanographic changes north of the Subtropical Front (STF), offshore eastern New Zealand, southwest Pacific. The abundance of warm-water taxa relative to cool-water taxa was used to determine a radiolarian paleotemperature index, the Subtropical (ST) Index. ST Index variations show strong covariance with benthic foraminifera oxygen isotope records from Site 1123 and exhibit similar patterns through Glacial-Interglacial (G-I) cycles of marine isotope stages (MIS) 15-1. At Site 1123, warm-water taxa peak in abundance during Interglacials (reaching ~8% of the total fauna). Within Glacials cool-water taxa increase to ~15% (MIS2) of the fauna. Changes in radiolarian assemblages at Site 1124 indicate similar but much better resolved trends through MIS15-12 and 7-1. Pronounced increases in warm-water taxa occur at the onset of Interglacials (reaching ~15% of the fauna), whereas the abundance of cool-water taxa increases in Glacials peaking in MIS2 (~17% of the fauna). Overall warmer conditions at Site 1124 during the last 600 kyrs indicate sustained influence of the subtropical, warm East Cape Current (ECC). During Interglacials radiolarian assemblages suggest an increase in marine productivity at both sites which might be due to predominance of micronutrient-rich Subtropical Water. At Site 1123, an increased abundance of deep-dwelling taxa in MIS 13 and 9 suggests enhanced vertical mixing. During Glacials, reduced vigour of ECC flow combined with northward expansion of cool, micronutrient-poor Subantarctic Water occurs. Only at Site 1123 there is evidence of a longitudinal shift of the STF, reaching as far north as 41°S.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, temporal fluctuations in the abundance of C. d. davisiana have been used frequently as a highresolution stratigraphic and paleoenvironmental tool. The modern ecology and morphologic variation (temporal and geographic) of this radiolarian species is evaluated to ascertain its potential stratigraphic and paleoenvironmental significance. Statistics were obtained on the width and height of all C. d. davisiana segments from Pleistocene populations of differing ages from the Northern Hemisphere (Labrador Sea and Iceland-Faeroe Ridge) and Southern Hemisphere (Namibian shelf and Meteor Rise). Results reveal that segment height variations between and within populations are more conservative than segment width. The mean sizes of the thorax and first abdominal segment have distinguishable differences between C. d. davisiana found in the North and South Atlantic. All populations have no significant difference in first abdominal segment width, however, mean heights of this segment differ greatly between populations of the North and South Atlantic. Second abdominal segment sizes show no clear population grouping. Size differences in post-cephalic segment size of these populations would appear to be related to some isolation of gene pools and possibly unknown paleoenvironmental factors. Temporal changes in the postcephalic size of C. d. davisiana may be used to: (1) identify temporally equivalent peaks in abundance of the species in a given region, (2) possibly evaluate the degree of mixing of water'masses between regions, and (3) trace the initial spread of the species from its area of origin. Cleve's 1887 plankton samples, between Greenland and Spitzsbergen, were studied and used in conjunction with other data to make the following conclusions on the modern ecology of C. d. davisiana in the Arctic and Greenland-Norwegian Seas. (1) It is presently absent in surface water plankton samples, (2) it currently lives at depths below 500 m, where it is rare, (3) it does not live in the upper 200 m under Arctic ice but is rare at greater depths, (4) it is absent in the upper 200 m near permanent Greenland Sea ice where normal oceanic salinity prevails, and (5) it is most common in deep marginal fjord environments which may serve as a refuge for the species during interglacial periods. In the Atlantic Ocean, the abundance of C. d. davisiana does not exceed 1% of the assemblage between the Subtropical Convergence of each hemisphere. In the Norwegian and Labrador Seas the species may occasionally be in the range of 1-5% of the modern radiolarian assemblage and never more than 5% in the southern high latitudes. Apparently only in the modern Sea of Okhotsk, does the species presently occur in high abundance. We concur with Morley and Hays (1983) that increased abundances are likely caused by the development of a strong low-salinity surface layer associated with seasonal sea ice melting and a strong temperature minimum above warmer and higher salinity intermediate waters. Similar conditions were frequent during the Pleistocene in the high latitudes and its modern scarcity outside the Sea of Okhotsk must be related to the absence of the presently unique conditions in the latter region.