3 resultados para CTX-M-15-PRODUCING STRAINS

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay, New York, and the Bay of Fundy, Canada, grew significantly faster (16-190%; p < 0.05) when exposed to elevated levels of PCO2 ( 90-190 Pa=900-1900 µatm) compared to lower levels ( 40 Pa=400 µatm). Exposure to higher levels of PCO2 also resulted in significant increases (71-81%) in total cellular toxicity (fg saxitoxin equivalents/cell) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between PCO2 enrichment and elevated growth was reproducible in natural populations from New York waters. Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 150 Pa PCO2 compared to 39 Pa. During natural Alexandrium blooms in Northport Bay, PCO2 concentrations increased over the course of a bloom to more than 170 Pa and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may further exacerbate acidification and/or be especially adapted to these acidi-fied conditions. The co-occurrence of Alexandrium blooms and elevated PCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated PCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain-specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 ºC. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 ºC. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube elements cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC:POC, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC:POC-temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to less coccolith malformations.