5 resultados para CRYSTAL MORPHOLOGY
em Publishing Network for Geoscientific
Resumo:
We determined changes in equatorial Pacific phosphorus (µmol P/g) and barite (BaSO4; wt%) concentrations at high resolution (2 cm) across the Paleocene/Eocene (P/E) boundary in sediments from Ocean Drilling Program (ODP) Leg 199 Site 1221 (153.40 to 154.80 meters below seafloor [mbsf]). Oxide-associated, authigenic, and organic P sequentially extracted from bulk sediment were used to distinguish reactive P from detrital P. We separated barite from bulk sediment and compared its morphology with that of modern unaltered biogenic barite to check for diagenesis. On a CaCO3-free basis, reactive P concentrations are relatively constant and high (323 µmol P/g or ~1 wt%). Barite concentrations range from 0.05 to 5.6 wt%, calculated on a CaCO3-free basis, and show significant variability over this time interval. Shipboard measurements of P and Ba in bulk sediments are systematically lower (by ~25%) than shore-based concentrations and likely indicate problems with shipboard standard calibrations. The presence of Mn oxides and the size, crystal morphology, and sulfur isotopes of barite imply deposition in sulfate-rich pore fluids. Relatively constant reactive P, organic C, and biogenic silica concentrations calculated on a CaCO3-free basis indicate generally little variation in organic C, reactive P, and biogenic opal burial across the P/E boundary, whereas variable barite concentrations indicate significant changes in export productivity. Low barite Ba/reactive P ratios before and immediately after the Benthic Extinction Event (BEE) may indicate efficient nutrient burial, and, if nutrient burial and organic C burial are linked, high relative organic C burial that could temporarily drawdown CO2 at this site. This interpretation requires postdepositional oxidation of organic C because organic C to reactive P ratios are low throughout the section. After the BEE, higher barite Ba/reactive P ratios combined with higher barite Ba concentrations may imply that higher export productivity was coupled with unchanged reactive P burial, indicating efficient nutrient and possibly also organic C recycling in the water column. If the nutrient recycling is decoupled from organic C, the high export production could be indicative of drawdown of CO2. However, the observation that organic C burial is not high where barite burial is high may imply that either C sequestration was restricted to the deep ocean and thus occurred only on timescales of the deep ocean mixing or that postdepositional oxidation (burn down) of organic matter affected the sediments. The decoupling of barite and opal may result from low opal preservation or production that is not diatom based.
Resumo:
Samples recovered from Hole 504B during Leg 140 include a number of medium-grained, holocrystalline diabases that appear to represent the cores of thick dikes. The plagioclase and pyroxene in these samples occur in a variety of crystal morphologies. Plagioclase occurs as phenocrysts, microphenocrysts, elongate crystals, skeletal crystals, and branching radial clusters. Pyroxene occurs as phenocrysts, microphenocrysts, ophitic crystals, and poikilitic crystals. Plagioclase compositions became progressively poorer in anorthite and MgO and progressively richer in FeO as crystallization proceeded, while the average grain volume decreased and the aspect ratio of individual grains increased. Pyroxene compositions are largely independent of crystal morphology. The diabase dikes recovered from Hole 504B during Leg 140 appear to have crystallized in situ. Crystal compositions and morphologies are consistent with a rapid cooling rate and solidification times for individual dikes on the order of hours or days. The crystallization rate and nucleation rate of plagioclase lagged behind the cooling rate so that the degree of undercooling progressively increased as crystallization proceeded. Plagioclase crystal morphologies indicate much greater degrees of supersaturation than do pyroxene or olivine crystal morphologies. The 504B diabase magmas appear to have been emplaced with abundant preexisting pyroxene and olivine nuclei, but with few preexisting plagioclase nuclei. The suppression of plagioclase nucleation and crystallization relative to that of pyroxene and olivine could provide a mechanism by which the actual fractionation assemblage is more pyroxene-rich and plagioclase-poor than that predicted from thermodynamic models, or that observed in isothermal crystallization experiments.
Resumo:
Ocean acidification, the assimilation of atmospheric CO2 by the oceans that decreases the pH and CaCO3 saturation state (Omega) of seawater, is projected to have severe adverse consequences for calcifying organisms. While strong evidence suggests calcification by tropical reef-building corals containing algal symbionts (zooxanthellae) will decline over the next century, likely responses of azooxanthellate corals to ocean acidification are less well understood. Because azooxanthellate corals do not obtain photosynthetic energy from symbionts, they provide a system for studying the direct effects of acidification on energy available for calcification. The solitary azooxanthellate orange cup coral Balanophyllia elegans often lives in low-pH, upwelled waters along the California coast. In an 8-month factorial experiment, we measured the effects of three pCO2 treatments (410, 770, and 1220 µatm) and two feeding frequencies (3-day and 21-day intervals) on "planulation" (larval release) by adult B. elegans, and on the survival, skeletal growth, and calcification of newly settled juveniles. Planulation rates were affected by food level but not pCO2. Juvenile mortality was highest under high pCO2 (1220 µatm) and low food (21-day intervals). Feeding rate had a greater impact on calcification of B. elegans than pCO2. While net calcification was positive even at 1220 µatm (~3 times current atmospheric pCO2), overall calcification declined by ~25-45%, and skeletal density declined by ~35-45% as pCO2 increased from 410 to 1220 µatm. Aragonite crystal morphology changed at high pCO2, becoming significantly shorter but not wider at 1220 µatm. We conclude that food abundance is critical for azooxanthellate coral calcification, and that B. elegans may be partially protected from adverse consequences of ocean acidification in habitats with abundant heterotrophic food.
Resumo:
Barite can precipitate in microenvironments in the water column (marine barite), from supersaturated pore fluids at the oxic-anoxic boundary within marine sediments and where Ba-rich pore fluids are expelled and come into contact with sulfate-rich seawater (diagenetic barite), or from hydrothermal solutions (hydrothermal barite). Barite is relatively resistant to alteration after burial and has been used in paleoceanographic studies to reconstruct seawater chemistry and productivity through time. For such applications it is very important to determine the origin of the barite used, because both diagenetic and hydrothermal barite deposits may not accurately record the open-ocean contemporaneous seawater chemistry and productivity. We show here that it is possible to distinguish between the different types of barite by using Sr and S isotopes along with crystal morphology and size characteristics.
Resumo:
The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.