20 resultados para CONSECUTIVE SEASONS

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research full-factorial experiments across seasons in multi-species, cross-trophic level set-ups are essential as they allow making realistic estimations about direct and indirect effects and the relative importance of both major environmental stressors on ecosystems. In benthic mesocosm experiments we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels only had minor effects, warming had strong and persistent effects on grazers which affected the Fucus community differently depending on season. In late summer a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species resulting in overgrowth of Fucus thalli by epiphytes. In fall/ winter, outside the growing season of epiphytes, intensified grazing under warming resulted in a significant reduction of Fucus biomass. Thus, we confirm the prediction that future increasing water temperatures influence marine food-web processes by altering top-down control, but we also show that specific consequences for food-web structure depend on season. Since Fucus vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implicates the loss of key functions and services such as provision of nutrient storage, substrate, food, shelter and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper focuses on studies of snow-pit samples and shallow firn cores taken during the 1995-96 and 1996-97 field seasons at Amundsenisen, Dronning Maud Land, Antarctica. The dating of the firn is based on the artificial tritium distribution in the snow cover and on several reference horizons identified by electrical measurements. The early 1964 through 1965 horizon is marked by the deposition of sulfate released to the atmosphere during the eruption of the Agung volcano in March 1963; this horizon was detected by dielectric profiling and electrical conductivity measurements; the proof by chemical analysis has still to be seen. At the ten investigated sites on Amundsenisen the 1964-65 horizon was identified 4.1-5.7 m below the surface. The accumulation rates on Amundsenisen are 41-91 kg/m**2/a. The cores are up to 100 years old. A relationship between isotope content and the mean air temperature on a regional scale can be based on measurements of firn temperature at 10 m depth at the drilling sites. Between Neumayer station at the coast and Heimefrontfjella, the temperature gradient of the deuterium content is 9.6 per mil/K. South of Heimefrontfjella, on the Amundsenisen plateau, it is only 5.5 per mil/K. Time series of yearly accumulation rates show no significant trend. For the isotope records a significant trend to higher values with gradients of 0.1-0.2 d2H per mil/a can be seen in five of the ten time series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short-lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2-10 °C for 2-14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week-long extreme winter warming events - using infrared heating lamps and soil warming cables - for 3 consecutive years in a sub-Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11-75% and 52-95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis-idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long-term summer warming simulations and the 'greening' seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. In Polar Regions, the extent and dynamics of sea-ice are changing. This affects the ocean productivity which consecutively impacts plankton communities and polar top predators like penguins. Yet, the underlying behavioural and physiological mechanisms remain poorly understood. 2. Here we monitored the ecophysiological responses of Adelie penguin (Pygoscelis adeliae) pairs during two seasons of contrasting timing of sea-ice retreat. Beside classical breeding parameters like foraging trip duration, body mass and reproductive success, we also investigated food-related stress (via plasma corticosterone concentration), nutritional state (via metabolite levels) and the use of penguins' habitat (via blood isotopic values). 3. Body mass and reproductive success remained unchanged but foraging trips were shorter when sea-ice retreated earlier. Constant plasma corticosterone concentrations indicated that none of the feeding conditions resulted in a food-related stress. However metabolite levels were lower when sea-ice retreated early, suggesting that the foraging performance and the quality/quantity of food differed. Indeed isotopic ratios indicated that coastal prey like fish contributed more to the penguins' diet when sea-ice retreated prematurely. 4. The early sea-ice retreat was related to higher chlorophyll concentrations, known to favour krill recruitment. Paradoxically, this was not associated to a higher krill contribution in the penguins' diet. We propose that a shift in the phytoplankton quality (rather than quantity), affecting krill recruitment, forced penguins to switch to more available prey like coastal fish. 5. In some Antarctic regions, sea-ice is retreating earlier and earlier. In the present study, even though the timing of sea-ice retreat and the consecutive ocean productivity differed drastically between the 2 years, Adelie penguins were not severely affected because they were able to adjust their at-sea behaviour and thus maintained their body condition and reproductive success unchanged. 6. This suggests that the timing of sea-ice retreat does not represent an important threat to populations of Adelie penguins at least as long as alternative resources are still available and other environmental parameters like winter sea-ice extent are not dramatically altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent development of in-situ monitoring devices, such as UV-spectrometers, makes the study of short-term stream chemistry variation relevant, especially the study of diurnal cycles, which are not yet fully understood. Our study is based on high-frequency data from an agricultural catchment (Studienlandschaft Schwingbachtal, Germany). We propose a novel approach, i.e. the combination of cluster analysis and Linear Discriminant Analysis, to mine from these data nitrate behavior patterns. As a result, we observe a seasonality of nitrate diurnal cycles, that differs from the most common cycle seasonality described in the literature, i.e. pre-dawn peaks in spring. Our cycles appear in summer and the maximum and minimum shift to a later time in late summer/autumn. This is observed both for water- and energy-limited years, thus potentially stressing the role of evapotranspiration. This concluding hypothesis on the role of evapotranspiration on nitrate stream concentration, which was obtained through data mining, broadens the perspective on the diurnal cycling of stream nitrate concentrations.