55 resultados para COLONY FORMING UNITS
em Publishing Network for Geoscientific
Resumo:
Mass mortalities of Pacific oysters Crassostrea gigas occur regularly when temperatures are high. Elevated temperatures facilitate the proliferation and spread of pathogens and simultaneously impose physiological stress on the host. Additionally, periods of high temperatures coincide with the oyster spawning season. Spawning is energetically costly and can further compromise oyster immunity. Most studies monitoring the underlying factors of oyster summer mortality in the field, point to the involvement of abiotic and biotic factors including low salinities, high temperatures, pollutants, toxic algae blooms, pathogen exposure and physical stress in conjunction with maturation. However, studies addressing more than two factors experi- mentally are missing thus far. Therefore, we investigated the combination of three main factors including abiotic as well as internal and external biotic stressors by conducting controlled infection experiments on pre-and post-spawning as well as on gravid oysters with opportunistic Vibrio sp. at two different tempera- tures. Based on mortality rates, infection intensity and cellular immune parameters, we provide experimental evidence that all three factors (i.e. reproductive investment, elevated temperatures and infection with oppor- tunistic Vibrio sp.) act additively to the phenomenon of oyster summer mortality, leaving post-spawning oyster more susceptible to SMS than pre-spawning and gravid oysters. While previous studies found that post-spawning oysters have a lower thermal tolerance and a reduced ability to withstand pathogen infec- tions, our study now allows to separate the relative contribution of different causative agents to oyster sum- mer mortality and pinpoint to infection with pathogenic Vibrio sp. being of highest importance. In addition we can add a mechanistic understanding for the higher losses after spawning during which the phagocytic ability of hemocytes was strongly impeded resulting in insufficient clearance of pathogens.
Resumo:
Sediments at the bottom of Lake Baikal are mostly oxidized at their surface, and the oxidized sedimentary deposits are enriched in Fe and Mn hydroxides. The thickness of the oxidized zone of the pelagic sediments averages at 5 cm and locally reaches 10-15, occasionally exceeding 20 cm. Both the thickness of the oxidized layer and the degree of its enrichment in iron and manganese hydroxides are controlled by the depth to which oxygen can penetrate into the sedimentary deposits, which is, in turn, closely related to the sedimentation conditions in the lake (which broadly vary). The sedimentation rate far off the shores of Lake Baikal ranges from <0.02 mm/year to 1.5 mm/year, and the content of organic matter buried in the sediments varies from 0.1 to >4%. The variability of the sedimentation process makes Lake Baikal very convenient to study its diagenetic processes related to redox reactions in sediments, first of all, processes responsible for the redistribution of Fe and Mn compounds. Although the diagenetic enrichment of Fe and Ni in bottom sediments is known to be of biogenic character, very scarce information is available so far on the microorganisms involved in the redistribution of these elements in sediments in Lake Baikal, which lately led us to explore this issue in detail. Our research was centered on the role played by the microbial community in the diagenetic transformations of Fe and Mn with reference to sedimentation conditions in Lake Baikal.
Resumo:
The dataset provides detailed information on the study that was conducted in Lahore's 7 major towns. The sample was taken from 472 tubewells and analyzed for major cations and anions using APHA 2012 techniques as explained herein. Besides, E.coli determination was done to check for microbial contamination. The data includes results from PHREEQC modeling of As(III)/ As(V) species and saturation indices as well as Aquachem's computed hydrochemical water facies. The WHO (2011) and EPA standards included in Aquachem identified the parameters that where in violation. Bicarbonates dominated the groundwater types with 50.21% of the samples exceeding the EPA maximum permissible limit of 250 mg/L in drinking water. Similarly, 30.51% of the samples had TDS values greater than 500 mg/L while 85.38 % of the samples exceed 10 µg/L threshold limit value of arsenic. Also, instances of high magnesium hazard values were observed which requires constant assessment if the groundwater is used for irrigation. Higher than 50% MH values are detrimental to crops which may reduce the expected yields. The membrane filtration technique using m-Endo Agar indicated that 3.59% samples had TNC (too numerous to count) values for E.coli while 5.06% showed values higher than 0 cfu/ 100 ml acceptable value in drinking water. Any traces of E-coli in a groundwater sample indicate recent fecal contamination. Such outcomes signify presence of enteric pathogens. If the groundwater is not properly dosed with disinfectants it may cause harm to human health. It is concluded that more studies are needed and proper groundwater management implement to safeguard the lives of communities that depend solely on groundwater in the city.
Resumo:
A new microtiter-plate dilution method was applied during the expedition ANTARKTIS-XI/2 with RV Polarstern to determine the distribution of copiotrophic and oligotrophic bacteria in the water columns at polar fronts. Twofold serial dilutions were performed with an eight-channel Electrapette in 96-wells plates by mixing 150 µl of seawater with 150 µl of copiotrophic or olitrophic Trypticase-Broth, three times per well. After incubation of about 6 month at 2 °C, turbidities were measured with an eight-channel photometer at 405 nm and combinations of positive test results for three consecutive dilutions chosen and compared with a Most Probable Number table, calculated for 8 replicates and twofold serial dilutions. Densities of 12 to 661 cells/ml for copiotrophs, and 1 to 39 cells/ml for oligotrophs were found. Colony Forming Units on copiotrophic Trypticase-Agar were between 6 and 847 cells/ml, which is in the same range as determined with the MPN method.
Resumo:
Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.
Resumo:
Recent studies have discussed the consequences of ocean acidification for bacterial processes and diversity. However, the decomposition of complex substrates in marine environments, a key part of the flow of energy in ecosystems, is largely mediated by marine fungi. Although marine fungi have frequently been reported to prefer low pH levels, this group has been neglected in ocean acidification research. We present the first investigation of direct pH effects on marine fungal abundance and community structure. In microcosm experiments repeated in 2 consecutive years, we incubated natural North Sea water for 4 wk at in situ seawater pH (8.10 and 8.26), pH 7.82 and pH 7.67. Fungal abundance was determined by colony forming unit (cfu) counts, and fungal community structure was investigated by the culture-independent fingerprint method Fungal Automated Ribosomal Intergenic Spacer Analysis (F-ARISA). Furthermore, pH at the study site was determined over a yearly cycle. Fungal cfu were on average 9 times higher at pH 7.82 and 34 times higher at pH 7.67 compared to in situ seawater pH, and we observed fungal community shifts predominantly at pH 7.67. Currently, surface seawater pH at Helgoland Roads remains >8.0 throughout the year; thus we cannot exclude that fungal responses may differ in regions regularly experiencing lower pH values. However, our results suggest that under realistic levels of ocean acidification, marine fungi will reach greater importance in marine biogeochemical cycles. The rise of this group of organisms will affect a variety of biotic interactions in the sea.
Resumo:
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness (low immunopathology) of invaders. Despite of strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.) we demonstrate that within a few generations hosts adapted to sympatric pathogen communities. However, this local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.
Resumo:
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Overall, our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. Also, this research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.
Resumo:
Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing 'classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly 'matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.