48 resultados para COBALT(II) CARBOXYLATE

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O.We have compiled and evaluated thermodynamic data for Fe-Ni-Co-O-S phases and computed phase relations in fO2,g-fS2,g and aH2,aq-aH2S,aq diagrams for temperatures between 150 and 400°C at 50MPa.We use the relations and compositions of Fe-Ni-Co-O-S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20'N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite- magnetite-pentlandite and heazlewoodite-magnetite-pentlandite assemblages forming in the early stages of serpentinization to millerite-pyrite-polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that highsulfur-fugacity sulfides, such as polydymite and pyrite-vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g-fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe-Ni-Co-O-S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration.The co-occurrence of pentlandite- awaruite-magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aqueous dihydrogen (H2,aq) is produced in copious amounts when seawater interacts with peridotite and H2O oxidizes ferrous iron in olivine to ferric iron in secondary magnetite and serpentine. Poorly understood in this process is the partitioning of iron and its oxidation state in serpentine, although both impose an important control on dihydrogen production. We present results of detailed petrographic, mineral chemical, magnetic and Mößbauer analyses of partially to fully serpentinized peridotites from the Ocean Drilling Program (ODP) Leg 209, Mid-Atlantic Ridge (MAR) 15°N area. These results are used to constrain the fate of iron during serpentinization and are compared with phase equilibria considerations and peridotite-seawater reaction path models. In samples from Hole 1274A, mesh-rims reveal a distinct in-to-out zoning from brucite at the interface with primary olivine, followed by a zone of serpentine + brucite ± magnetite and finally serpentine + magnetite in the outermost mesh-rim. The compositions of coexisting serpentine (Mg# 95) and brucite (Mg# 80) vary little throughout the core. About 30-50% of the iron in serpentine/brucite mesh-rims is trivalent, irrespective of subbasement depth and protolith (harzburgite versus dunite). Model calculations suggest that both partitioning and oxidation state of iron are very sensitive to temperature and water-to-rock ratio during serpentinization. At temperatures above 330 °C the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen depends on the availability of an external silica source. At these temperatures the extent of olivine serpentinization is insufficient to produce much hydrogen, hence conditions are not reducing enough to form awaruite. At T < 330 °C, hydrogen generation is facilitated by the formation of brucite, as dissolution of olivine to form serpentine, magnetite and brucite requires no addition of silica. The model calculations suggest that the iron distribution observed in serpentine and brucite is consistent with formation temperatures ranging from <150 to 250 °C and bulk water-to-rock ratios between 0.1 and 5. These conditions coincide with peak hydrogen fugacities during serpentinization and are conducive to awaruite formation during main stage serpentinization. The development of the common brucite rims around olivine is either due to an arrested reaction olivine -> brucite -> serpentine + brucite, or reflects metastable olivine-brucite equilibria developing in the strong gradient in silica activity between orthopyroxene (talc-serpentine) and olivine (serpentine-brucite).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Portneuf-Mauricie Domain (PMD), located in the south-central part of the Grenville Province, comprises several mafic and ultramafic intrusions hosting Ni-Cu ± platinum-group element (PGE) prospects and a former small mining operation (Lac Édouard mine). These meter- to kilometer-scale, sulfide-bearing intrusions display diverse forms, such as layered and tabular bodies with no particular internal structure, and zoned plutons. They were injected ~ 1.40 Ga into a mature oceanic arc, before and during accretion of the arc to the Laurentian margin. The pressure-temperature conditions of the magmas at the beginning of their emplacement were 3 kbar and 1319-1200 °C (according to the petrologic modeling results from this study). The PMD mineralized intrusions are interpreted to represent former magma chambers or magma conduits in the roots of the oceanic arc. The parent magmas of the mineralized intrusions resulted mainly from the partial melting of a mantle source composed of spinel-bearing lherzolite. Petrologic modeling and the occurrence of primary amphibole in the plutonic rocks indicate that these parent melts were basaltic and hydrous. In addition, fractional crystallization modeling and Mg/Fe ratios suggest that most of the intrusions may have formed from evolved magmas, with Mg# = 60, resulting from the fractionation of more primitive magmas (primary magmas, with Mg# = 68). Petrologic modeling demonstrates that 30% fractional crystallization resulted in the primitive to evolved characteristics of the studied intrusive rocks (as indicated by the crystallization sequences and mineral chemistry). Exceptions are the Réservoir Blanc, Boivin, and Rochette West parent magmas, which may have undergone more extensive fractional crystallization, since these intrusions contain pyroxenes that are more iron rich and have lower Mg numbers than pyroxenes in the other PMD intrusions. The PMD mafic and ultramafic intrusions were intruded into an island arc located offshore from the Laurentian continent. Thus, their presence confirms the existence of a well-developed magmatic network (responsible of the fractionation processes) beneath the Proterozoic arc, which resulted in the wide range of compositions observed in the various plutons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data on internal structure, distribution, and chemical composition of iron-manganese nodules from the central part of the South Pacific are reported. Nodules with relatively high contents of Fe, Ti, Co, and Pb were found. Formation of these nodules in pelagic regions of the ocean with low sedimentation rates is tentatively ascribed by the authors to leaching of Fe, Mn, and some minor elements during submarine lava outflow and to geochemical mobility of these elements. The role of diagenetic re-distribution of ore elements during formation of nodules is also discussed.