129 resultados para CO2 flux

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A time series of fCO2, SST, and fluorescence data was collected between 1995 and 1997 by a CARIOCA buoy moored at the DyFAMed station (Dynamique des Flux Atmospheriques en Mediterranée) located in the northwestern Mediterranean Sea. On seasonal timescales, the spring phytoplankton bloom decreases the surface water fCO2 to approximately 290 µatm, followed by summer heating and a strong increase in fCO2 to a maximum of approximately 510 µatm. While the DELTA fCO2 shows strong variations on seasonal timescales, the annual average air-sea disequilibrium is only 2 µatm. Temperature-normalized fCO2 shows a continued decrease in dissolved CO2 throughout the summer and fall at a rate of approximately 0.6 µatm/d. The calculated annual air-sea CO2 transfer rate is -0.10 to -0.15 moles CO2 m-2 y-1, with these low values reflecting the relatively weak wind speed regime and small annual air-sea fCO2 disequilibrium. Extrapolating this rate over the whole Mediterranean Sea would lead to a flux of approximately -3 * 10**12 to -4.5 * 10**12 grams C/y, in good agreement with other estimates. An analysis of the effects of sampling frequency on annual air-sea CO2 flux estimates showed that monthly sampling is adequate to resolve the annual CO2 flux to within approximately ±10 - 18% at this site. Annual flux estimates made using temperature-derived fCO2 based on the measured fCO2-SST correlations are in agreement with measurement-based calculations to within ± 7-10% (depending on the gas transfer parameterization used), and suggest that annual CO2 flux estimates may be reasonably well predicted in this region from satellite or model-derived SST and wind speed information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We conducted a six-week investigation of the sea ice inorganic carbon system during the winter-spring transition in the Canadian Arctic Archipelago. Samples for the determination of sea ice geochemistry were collected in conjunction with physical and biological parameters as part of the 2010 Arctic-ICE (Arctic - Ice-Covered Ecosystem in a Rapidly Changing Environment) program, a sea ice-based process study in Resolute Passage, Nunavut. The goal of Arctic-ICE was to determine the physical-biological processes controlling the timing of primary production in Arctic landfast sea ice and to better understand the influence of these processes on the drawdown and release of climatically active gases. The field study was conducted from 1 May to 21 June, 2010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of the JGOFS field program, extensive CO2 partial-pressure measurements were made in the atmosphere and in the surface waters of the equatorial Pacific from 1992 to 1999. For the first time, we are able to determine how processes occurring in the western portion of the equatorial Pacific impact the sea-air fluxes of CO2 in the central and eastern regions. These 8 years of data are compared with the decade of the 1980s. Over this period, surface-water pCO2 data indicate significant seasonal and interannual variations. The largest decreases in fluxes were associated with the 1991-94 and 1997-98 El Niño events. The lower sea-air CO2 fluxes during these two El Niño periods were the result of the combined effects of interconnected large-scale and locally forced physical processes: (1) development of a low-salinity surface cap as part of the formation of the warm pool in the western and central equatorial Pacific, (2) deepening of the thermocline by propagating Kelvin waves in the eastern Pacific, and (3) the weakening of the winds in the eastern half of the basin. These processes serve to reduce pCO2 values in the central and eastern equatorial Pacific towards near-equilibrium values at the height of the warm phase of ENSO. In the western equatorial Pacific there is a small but significant increase in seawater pCO2 during strong El Niño events (i.e., 1982-83 and 1997-98) and little or no change during weak El Niño events (1991-94). The net effect of these interannual variations is a lower-than-normal CO2 flux to the atmosphere from the equatorial Pacific during El Niño. The annual average fluxes indicate that during strong El Niños the release to the atmosphere is 0.2-0.4 Pg C/yr compared to 0.8-1.0 Pg C/yr during non-El Niño years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seasonal patterns in hydrography, partial pressure of CO2, fCO2, pHt, total alkalinity, AT, total dissolved inorganic carbon, CT, nutrients, and chlorophyll a were measured in surface waters on monthly cruises at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) located in the northeast Atlantic subtropical gyre. With over 5 years of oceanographic data starting in 1996, seasonal and interannual trends of CO2 species and air-sea exchange of CO2 were determined. Net CO2 fluxes show this area acts as a minor source of CO2, with an average outgassing value of 179 mmol CO2/m**2 yr controlled by the dominant trade winds blowing from May to August. The effect of short-term wind variability on the CO2 flux has been addressed by increasing air-sea fluxes by 63% for 6-hourly sampling frequency. The processes governing the monthly variations of CT have been determined. From March to October, when CT decreases, mixing at the base of the mixed layer (11.5 ± 1.5 mmol/m**3) is compensated by air-sea exchange, and a net organic production of 25.5 ± 5.7 mmol/m**3 is estimated. On an annual scale, biological drawdown accounts for the decrease in inorganic carbon from March to October, while mixing processes control the CT increase from October to the end of autumn. After removing seasonality variability, fCO2sw increases at a rate of 0.71 ± 5.1 µatm/yr, and as a response to the atmospheric trend, inorganic carbon increases at a rate of 0.39 ± 1.6 µmol/kg yr.