500 resultados para CF_4:1008
em Publishing Network for Geoscientific
Resumo:
Mineralogic, petrographic, and geochemical analyses of sediments recovered from two Leg 166 Ocean Drilling Program cores on the western slope of Great Bahama Bank (308 m and 437 m water depth) are used to characterize early marine diagenesis of these shallow-water, periplatform carbonates. The most pronounced diagenetic products are well-lithified intervals found almost exclusively in glacial lowstand deposits and interpreted to have formed at or near the seafloor (i.e., hardgrounds). Hardground cements are composed of high-Mg calcite (~14 mol% MgCO3), and exhibit textures typically associated with seafloor cementation. Geochemically, hardgrounds are characterized by increased d18O and Mg contents and decreased d13C, Sr, and Na contents relative to their less lithified counterparts. Despite being deposited in shallow waters that are supersaturated with the common carbonate minerals, it is clear that these sediments are also undergoing shallow subsurface diagenesis. Calculation of saturation states shows that pore waters become undersaturated with aragonite within the upper 10 m at both sites. Dissolution, and likely recrystallization, of metastable carbonates is manifested by increases in interstitial water Sr and Sr/Ca profiles with depth. We infer that the reduction in mineral saturation states and subsequent dissolution are being driven by the oxidation of organic matter in this Fe-poor carbonate system. Precipitation of burial diagenetic phases is indicated by the down-core appearance of dolomite and corresponding decrease in interstitial water Mg, and the presence of low-Mg calcite cements observed in scanning electron microscope photomicrographs.
Resumo:
Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research full-factorial experiments across seasons in multi-species, cross-trophic level set-ups are essential as they allow making realistic estimations about direct and indirect effects and the relative importance of both major environmental stressors on ecosystems. In benthic mesocosm experiments we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels only had minor effects, warming had strong and persistent effects on grazers which affected the Fucus community differently depending on season. In late summer a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species resulting in overgrowth of Fucus thalli by epiphytes. In fall/ winter, outside the growing season of epiphytes, intensified grazing under warming resulted in a significant reduction of Fucus biomass. Thus, we confirm the prediction that future increasing water temperatures influence marine food-web processes by altering top-down control, but we also show that specific consequences for food-web structure depend on season. Since Fucus vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implicates the loss of key functions and services such as provision of nutrient storage, substrate, food, shelter and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.
Resumo:
An intensive mineralogic and geochemical investigation was conducted on sediments recovered during Ocean Drilling Program Leg 166 from the western Great Bahama Bank at Sites 1006, 1008, and 1009. Pleistocene through middle Miocene sediments recovered from Site 1006, the distal location on the Leg 166 transect, are a mixture of bank-derived and pelagic carbonates with lesser and varying amounts of siliciclastic clays. A thick sequence of Pleistocene periplatform carbonates was recovered near the platform edge at Sites 1008 and 1009. Detailed bulk mineralogic, elemental (Ca, Mg, Sr, and Na), and stable isotopic (d18O and d13C) analyses of sediments are presented from a total of 317 samples from all three sites.