15 resultados para CENTRAL SET

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Records of the spatial and temporal variability of Arctic Ocean sea ice are of significance for understanding the causes of the dramatic decrease in Arctic sea-ice cover of recent years. In this context, the newly developed sea-ice proxy IP25, a mono-unsaturated highly branched isoprenoid alkene with 25 carbon atoms biosynthesized specifically by sea-ice associated diatoms and only found in Arctic and sub-Arctic marine sediments, has been used to reconstruct the recent spatial sea-ice distribution. The phytoplankton biomarkers 24S-brassicasterol and dinosterol were determined alongside IP25 to distinguish ice-free or permanent ice conditions, and to estimate the sea-ice conditions semi-quantitatively by means of the phytoplankton-IP25 index (PIP25). Within our study, for the first time a comprehensive data set of these biomarkers was produced using fresh and deep-frozen surface sediment samples from the Central Arctic Ocean proper (>80°N latitude) characterised by a permanent ice cover today and recently obtained surface sediment samples from the Chukchi Plateau/Basin partly covered by perennial sea ice. In addition, published and new data from other Arctic and sub-Arctic regions were added to generate overview distribution maps of IP25 and phytoplankton biomarkers across major parts of the modern Arctic Ocean. These comprehensive biomarker data indicate perennial sea-ice cover in the Central Arctic, ice-free conditions in the Barents Sea and variable sea-ice situations in other marginal seas. The low but more than zero values of biomarkers in the Central Arctic supported the low in-situ productivity there. The PIP25 index values reflect modern sea-ice conditions better than IP25 alone and show a positive correlation with spring/summer sea ice. When calculating and interpreting PIP25 index as a (semi-quantitative) proxy for reconstructions of present and past Arctic sea-ice conditions from different Arctic/sub-Arctic areas, information of the source of phytoplankton biomarkers and the possible presence of allochthonous biomarkers is needed, and the records of the individual biomarkers always should be considered as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-series sediment traps were deployed for five consecutive years in two distinctively different subarctic marine environments. The centrally located subarctic pelagic Station SA (49°N, 174°W; water depth 5406 m) was simultaneously studied along with the marginal sea Station AB (53.5°N, 177°W; water depth 3788 m) in the Aleutian Basin of the Bering Sea. A mooring system was tethered to the sea-floor with a PARFLUX type trap with 13 sample bottles, which was placed at 600 m above the sea-floor at each of the two stations. Sampling intervals were synchronized at the stations, and they were generally set for 20 days during highly productive seasons, spring through fall, and 56 days during winter months of low productivity. Total mass fluxes, which consisted of mainly biogenic phases, were significantly greater at the marginal sea Station AB than at the pelagic Station SA for the first four years and moderately greater for the last year of the observations. This reflects the generally recognized higher productivity in the Bering Sea. Temporal excursion patterns of the mass fluxes at the two stations generally were in parallel, implying that temporal changes in their biological productivity are strongly governed by a large-scale seasonal climatic variability over the region rather than local phenomena. The primary reason for the difference in total mass flux at the two stations stems mainly from varying contributions of siliceous and calcareous planktonic assemblages. A significantly higher opal contribution at Station AB than at Station SA was mainly due to diatoms. Diatom fluxes at the marginal sea station were about twice those observed at the pelagic station, resulting in a very high opal contribution at Station AB. In contrast to the opal fluxes, CaCO3 fluxes at Station AB were slightly lower than at Station SA. The ratios of Corg/Cinorg were usually significantly greater than one in both regions, suggesting that preferentially greater organic carbon from cytoplasm than skeletal inorganic carbon was exported from the surface layers. Such a process, known as the biological pump, leads to a carbon sink which effectively lowers p CO2 in the surface layers and then allows a net flux of atmospheric CO2 into the surface layer. The efficiency of the biological pump is greater in the Bering Sea than at the open-ocean station.