11 resultados para CASTLEREAGH, LORD
em Publishing Network for Geoscientific
Resumo:
Drilling at site 207 (DSDP Leg 21), located on the broad summit of the Lord Howe Rise, bottomed in rhyolitic rocks. Sanidine concentrates from four samples of the rhyolite were dated by the 40Ar/39Ar total fusion method and conventional K-Ar method, and yielded concordant ages of 93.7 +/- 1.1 my, equivalent to the early part of the Upper Cretaceous. At this time the Lord Howe Rise, which has continental-type structure, is thought to have been emergent and adjacent to the eastern margin of the Australian-antarctic continent. Subsequent to 94 my ago and prior to deposition of Maastrichtian (70-65 myBP) marine sediments on top of the rhyolitic basement of the Lord Howe Rise, rifting occurred and the formation of the Tasman Basin began by sea-floor spreading with rotation of the Rise away from the margin of Australia. Subsidence of the Rise continued until Early Eocene (about 50 myBP), probably marking the end of sea-floor spreading in the Tasman Basin. These large scale movements relate to the breakup of this part of Gondwanaland in the Upper Cretaceous.
Meteorological observations during Lord Anson cruise from Dungeoness to Bombay started at 1750-07-08
Resumo:
In May and June 1936 Dr. C. S. Piggot of the Geophysical Laboratory, Carnegie Institution of Washington, took a series of 11 deep-sea cores in the North Atlantic Ocean between the Newfoundland banks and the banks off the Irish coast. These cores were taken from the Western Union Telegraph Co.'s cable ship Lord Kelvin with the explosive type of sounding device which Dr. Piggot designed. All but two of these cores (Nos. 8 and 11) are more than 2.43 meters (8 feet) long, and all contain ample material for study. Of the two short cores, No. 8 was taken from the top of the Faraday Hills, as that part of the mid-Atlantic ridge is known, where the material is closely packed and more sandy and consequently more resistant; No. 11 came from a locality where the apparatus apparently landed on volcanic rock that may be part of a submarine lava flow.