7 resultados para CARBON SURFACES

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples for total organic carbon (TOC) analysis were collected on WOCE Line P15S (0° to 67°S along 170°W) and from 53° to 67°S along 170°E in the western South Pacific, and on Line I8 (5°N to 43°S along 80°/90°E) in the central Indian Ocean. TOC concentrations in the upper ocean varied greatly between the regions studied. Highest surface TOC concentrations (81-85 µM C and 68-73 µM C) were observed in the warmest waters (>27°C) of the western South Pacific and central Indian Oceans, respectively. Lowest surface TOC concentrations (45-65 µM C) were recorded in the southernmost waters occupied (>50°S along 170°W and 170°E). Deep water (>1000 m) TOC concentrations were uniform across all regions analyzed, averaging between 42.3 and 43 µM C (SD: ±0.9 µM C). Mixing between TOC-rich surface waters and TOC-poor deep waters was indicated by the strong correlations between TOC and temperature (r2>0.80, north of 45°S) and TOC and density (r2>0.50, southernmost regions). TOC was inversely correlated with apparent oxygen utilization (AOU) along isopycnal surfaces north of the Polar Frontal Zone (PFZ) and at depths <500 m. The TOC:AOU molar ratios at densities of sigmaT 23-27 ranged from -0.15 to -0.34 in the South Pacific and from -0.13 to -0.31 in the Indian Ocean. These ratios indicate that TOC oxidation was responsible for 21%-47% and 18%-43% of oxygen consumption in the upper South Pacific and Indian Oceans, respectively. At greater depths, TOC did not contribute to the development of AOU. There was no evidence for significant export of dissolved and suspended organic carbon along isopycnal surfaces that ventilate near the PFZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C2-C8 hydrocarbon concentrations (about 35 compounds identified, including saturated, aromatic, and olefinic compounds) from 27 shipboard-sealed, deep-frozen core samples of DSDP Hole 603B off the east coast of North America were determined by a gas-stripping/thermovaporization method. Total yields representing the hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces of the sediments vary from 22 to 2400 ng/g of dryweight sediment. Highest yields are measured in the two black shale samples of Core 603B-34 (hydrogen index of 360 and 320 mg/g Corg, respectively). In organic-carbon-normalized units these samples have hydrocarbon contents of 12,700 and 21,500 ng/g Corg, respectively, indicating the immaturity of their kerogens. Unusually high organic-carbonnormalized yields are associated with samples that are extremely lean in organic carbon. It is most likely that they are enriched by small amounts of migrated light hydrocarbons. This applies even to those samples with high organic-carbon contents (1.3-2.2%) of Sections 603B-28-4, 603B-29-1, 603B-49-2, and 603B-49-3, because they have an extremely low hydrocarbon potential (hydrogen index between 40 and 60 mg/g Corg). Nearly all samples were found to be contaminated by varying amounts of acetone that is used routinely in large quantities on board ship during core-cutting procedures. Therefore, 48 samples from the original set of 75 collected had to be excluded from the present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permanent water bodies not only store dissolved CO2 but are essential for the maintenance of wetlands in their proximity. From the viewpoint of greenhouse gas (GHG) accounting wetland functions comprise sequestration of carbon under anaerobic conditions and methane release. The investigated area in central Siberia covers boreal and sub-arctic environments. Small inundated basins are abundant on the sub-arctic Taymir lowlands but also in parts of severe boreal climate where permafrost ice content is high and feature important freshwater ecosystems. Satellite radar imagery (ENVISAT ScanSAR), acquired in summer 2003 and 2004, has been used to derive open water surfaces with 150 m resolution, covering an area of approximately 3 Mkm**2. The open water surface maps were derived using a simple threshold-based classification method. The results were assessed with Russian forest inventory data, which includes detailed information about water bodies. The resulting classification has been further used to estimate the extent of tundra wetlands and to determine their importance for methane emissions. Tundra wetlands cover 7% (400,000 km**2) of the study region and methane emissions from hydromorphic soils are estimated to be 45,000 t/d for the Taymir peninsula.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C2-C8 hydrocarbons (36 compounds identified) from 56 shipboard sealed, deep-frozen core samples of DSDP Leg 71, Site 511, Falkland Plateau, South Atlantic, were analyzed by a combined hydrogen stripping-thermovaporization method. Concentrations, which represent hydrocarbons dissolved in the pore water and adsorbed to the mineral surfaces of the sediment, vary from 24 ng/g of dry weight sediment in Lithologic Unit 4 to 17,400 ng/g in Lithologic Unit 6 ("black shale" unit). Likewise, the organic carbon normalized C2-C8 hydrocarbon concentrations range from 104 to 3.5 x 105 ng/g Corg. The latter value is more than one order of magnitude lower than expected for petroleum source beds in the main phase of oil generation. The low maturity at 600 meters depth is further supported by light hydrocarbon concentration ratios. The change of the kerogen type from Lithologic Unit 5 (Type III) to 6 (Type II) is evidenced by changes in the C6 and C7 hydrocarbon composition. Redistribution phenomena are observed close to the Tertiary-Cretaceous unconformity and at the contact between the "black shale" unit and the overlying Cretaceous chalks and claystones. Otherwise, the low molecular weight hydrocarbons in Hole 511 are formed in situ and remain at their place of formation. The core samples turned out to be contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures onboard Glomar Challenger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the cleaning of the HPC core surfaces from Hole 480 for photography, the material removed was conserved carefully in approximately 10 cm intervals (by K. Kelts); this material was made available to us in the hope that it would be possible to obtain oxygen isotope stratigraphy for the site. The samples were, of course, somewhat variable in size, but the majority were probably between 5 and 10 cm**3. Had this been a normal marine environment, such sample sizes would have contained abundant planktonic foraminifers together with a small number of benthics. However, this is clearly not the case, for many samples contained no foraminifers, whereas others contained more benthics than planktonics. Among the planktonic foraminifers the commonest species are Globigerina bulloides, Neogloboquadrina dutertrei, and N. pachyderma. A few samples contain a more normal fauna with Globigerinoides spp. and occasional Globorotalia spp. Sample 480-3-3, 20-30 cm contained Globigerina rubescens, isolated specimens of which were noted in a few other samples in Cores 3,4, and 5. This is a particularly solution-sensitive species; in the open Pacific it is only found widely distributed at horizons of exceptionally low carbonate dissolution, such as. the last glacial-to-interglacial transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the d13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their d13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.