132 resultados para C sequestration rate
em Publishing Network for Geoscientific
Resumo:
Detailed petrographical and bulk geochemical investigations of organic matter (OM) have been performed on sediments deposited below or close to upwelling areas offshore Peru (ODP-Leg 112; Sites 679, 681, 688) and Oman (ODP-Leg 117; Sites 720, 723, 724) in order to obtain a quantitative understanding of its accumulation and degradation. Microscopical as well as nanoscopical investigations reveal that the OM in sediments affected by upwelling mechanisms mainly (up to 98%) consists of unstructured (amorphous) organic aggregates without any apparent biological structures. In sediments which are not or to a lesser extent affected by upwelling (Site 720) terrestrial OM predominates. Organic carbon (TOC) contents are highly variable and range between 9.8% in sediments deposited below upwelling cells and 0.2% in sediments outside the upwelling zone. The TOC/sulphur ratios of the sediments scatter widely. The samples from the deep-water locations (Sites 688 and 720), show C/S-ratios of "normal" marine sediments, whereas at the other locations no correlation or even a negative correlation between sulphur and TOC concentration exists. In most of the upwelling-influenced sediments OM contains a significant amount of sulphur. The incorporation of sulphur into the OM followed microbial sulphate reduction and occurred in the upper meters of the sedimentary column. Below, OM is still present in vast amounts and relatively hydrogen-rich, but is nevertheless non-metabolizable and becomes the limiting factor for bacterial sulphate reduction. According to mass balance calculations 90-99% of the OM produced in the photic zone was remineralized and 1-3% was consumed by microbial sulphate reduction. The aerobic and anaerobic processes have greatly affected degradation and conservation of OM.
Resumo:
Feeding patterns of mass herbivorous copepods in upwelling areas are investigated. Daily rations and aspects of their formation are examined in Calanoides carinatus (Benguela upwelling), Calanus pacificus (off the California coast), and Calanus australis (Peru upwelling). Rations were calculated based on gut plant pigment contents obtained at daily stations using laser spectrofluorometry, experimental data on the rate of gut evacuation and data on the carbon/chlorophyll ratio in phytoplankton and particulate matter at the respective stations. When phytoplankton was abundant, diel feeding rhythms were not pronounced and gut pigment level was high during the entire 24-h period. When phytoplankton biomass was low, distinct feeding rhythms were pronounced with a nocturnal maximum. During active upwelling intensive feeding on phytoplankton supports energy (respiration) and plastic (growth, development, reproduction, accumulation of reserves) metabolism of copepods. When upwelling was inactive, the surface part of the population feeds less actively and is able only partially to cover its energy expenditures. The actively growing and reproducing populations of C. pacificus and C. carinatus may consume close to 20% of primary production, whereas the inactive population of C. australis consumed only 0.2% of primary production when upwelling weakened.
Resumo:
We determined changes in equatorial Pacific phosphorus (µmol P/g) and barite (BaSO4; wt%) concentrations at high resolution (2 cm) across the Paleocene/Eocene (P/E) boundary in sediments from Ocean Drilling Program (ODP) Leg 199 Site 1221 (153.40 to 154.80 meters below seafloor [mbsf]). Oxide-associated, authigenic, and organic P sequentially extracted from bulk sediment were used to distinguish reactive P from detrital P. We separated barite from bulk sediment and compared its morphology with that of modern unaltered biogenic barite to check for diagenesis. On a CaCO3-free basis, reactive P concentrations are relatively constant and high (323 µmol P/g or ~1 wt%). Barite concentrations range from 0.05 to 5.6 wt%, calculated on a CaCO3-free basis, and show significant variability over this time interval. Shipboard measurements of P and Ba in bulk sediments are systematically lower (by ~25%) than shore-based concentrations and likely indicate problems with shipboard standard calibrations. The presence of Mn oxides and the size, crystal morphology, and sulfur isotopes of barite imply deposition in sulfate-rich pore fluids. Relatively constant reactive P, organic C, and biogenic silica concentrations calculated on a CaCO3-free basis indicate generally little variation in organic C, reactive P, and biogenic opal burial across the P/E boundary, whereas variable barite concentrations indicate significant changes in export productivity. Low barite Ba/reactive P ratios before and immediately after the Benthic Extinction Event (BEE) may indicate efficient nutrient burial, and, if nutrient burial and organic C burial are linked, high relative organic C burial that could temporarily drawdown CO2 at this site. This interpretation requires postdepositional oxidation of organic C because organic C to reactive P ratios are low throughout the section. After the BEE, higher barite Ba/reactive P ratios combined with higher barite Ba concentrations may imply that higher export productivity was coupled with unchanged reactive P burial, indicating efficient nutrient and possibly also organic C recycling in the water column. If the nutrient recycling is decoupled from organic C, the high export production could be indicative of drawdown of CO2. However, the observation that organic C burial is not high where barite burial is high may imply that either C sequestration was restricted to the deep ocean and thus occurred only on timescales of the deep ocean mixing or that postdepositional oxidation (burn down) of organic matter affected the sediments. The decoupling of barite and opal may result from low opal preservation or production that is not diatom based.
Resumo:
The ice-covered Central Arctic Ocean is characterized by low primary productivity due to light and nutrient limitations. It has been speculated that the recent reduction in ice cover could lead to a substantial increase in primary production, but still little is known as to the fate of the ice-associated primary production, and of nutrient supply with increasing warming. This study presents results from the Central Arctic Ocean collected during summer 2012, when sea-ice reached a minimum extent since the onset of satellite observations. Net primary productivity (NPP) was measured in water column, sea ice and melt ponds by 14CO2 uptake at different irradiances. Photosynthesis vs. irradiance (PI) curves were established in laboratory experiments and used to upscale measured NPP to the deep Eurasian Basin (north of 78°N) using the irradiance-based Central Arctic Ocean Primary Productivity model (CAOPP). In addition, new annual production was calculated from the seasonal nutrient drawdown in the mixed layer since last winter. Results show that ice algae can contribute up to 60% to primary production in the Central Arctic at the end of the season. The ice-covered water column had lower NPP rates than open water probably due to light limitation. According to the nutrient ratios in the euphotic zone, nitrate limitation was detected in the Siberian Seas (Laptev Sea area), while silicate was the main limiting nutrient at the ice margin influenced by Atlantic waters. Although sea-ice cover was substantially reduced in 2012, total annual new production in the Eurasian Basin was 17 ± 7 Tg C/yr, which is similar to previous estimates. However, when including the contribution by sub-ice algal filaments, the annual production for the deep Eurasian Basin (north of 78°N) is 16 Tg C/yr higher than estimated before. Our data suggest that sub-ice algae might be responsible for potential local increases in NPP due to higher light availability under the ice, and their ability to benefit from a wider area of nutrients as they drift with the ice.
Resumo:
Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals
Resumo:
Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical environmental changes. To understand how coastal zooplankton respond to the combined impacts of heat shock and increased pCO2, the benthic copepod Tigriopus japonicus were treated at temperatures of 24, 28, 32 and 36 °C to simulate natural coastal temperatures experienced in warming events, when acclimated in the short term to either ambient (LC, 390 µatm) or future CO2 (HC, 1000 µatm). HC and heat shock did not induce any mortality of T. japonicus, though respiration increased up to 32 °C before being depressed at 36 °C. Feeding rate peaked at 28 °C but did not differ between CO2 treatments. Expression of heat shock proteins (hsps mRNA) was positively related to temperature, with no significant differences between the CO2 concentrations. Nauplii production was not affected across all treatments. Our results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods.
Resumo:
The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.
Resumo:
Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (>280, >295, >305, >320, >350 and >395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.
Seawater carbonate chemistry and calcification during an experiment with a coral Porites lutea, 2004
Resumo:
Using living corals collected from Okinawan coral reefs, laboratory experiments were performed to investigate the relationship between coral calcification and aragonite saturation state (W) of seawater at 25?C. Calcification rate of a massive coral Porites lutea cultured in a beaker showed a linear increase with increasing Waragonite values (1.08-7.77) of seawater. The increasing trend of calcification rate (c) for W is expressed as an equation, c = aW + b (a, b: constants). When W was larger than ~4, the coral samples calcified during nighttime, indicating an evidence of dark calcification. This study strongly suggests that calcification of Porites lutea depends on W of ambient seawater. A decrease in saturation state of seawater due to increased pCO2 may decrease reef-building capacity of corals through reducing calcification rate of corals.
Resumo:
Phytoplankton are the basis of marine food webs, and affect biogeochemical cycles. As CO2 levels increase, shifts in the frequencies and physiology of ecotypes within phytoplankton groups will affect their nutritional value and biogeochemical function. However, studies so far are based on a few representative genotypes from key species. Here, we measure changes in cellular function and growth rate at atmospheric CO2 concentrations predicted for the year 2100 in 16 ecotypes of the marine picoplankton Ostreococcus. We find that variation in plastic responses among ecotypes is on par with published between-genera variation, so the responses of one or a few ecotypes cannot estimate changes to the physiology or composition of a species under CO2 enrichment. We show that ecotypes best at taking advantage of CO2 enrichment by changing their photosynthesis rates most should increase in relative fitness, and so in frequency in a high-CO2 environment. Finally, information on sampling location, and not phylogenetic relatedness, is a good predictor of ecotypes likely to increase in frequency in this system.
Resumo:
We studied polar and temperate samples of the lichen Cetraria aculeata to investigate whether genetical differences between photobionts are correlated with physiological properties of the lichen holobiont. Net photosynthesis and dark respiration (DR) at different temperatures (from 0 to 30 °C) and photon flux densities (from 0 to 1,200 ?mol/m**2/s) were studied for four populations of Cetraria aculeata. Samples were collected from maritime Antarctica, Svalbard, Germany and Spain, representing different climatic situations. Sequencing of the photobiont showed that the investigated samples fall in the polar and temperate clade described in Fernández-Mendoza et al. (2011, doi:10.1111/j.1365-294X.2010.04993.x). Lichens with photobionts from these clades differ in their temperature optimum for photosynthesis, maximal net photosynthesis, maximal DR and chlorophyll content. Maximal net photosynthesis was much lower in Antarctica and Svalbard than in Germany and Spain. The difference was smaller when rates were expressed by chlorophyll content. The same is true for the temperature optima of polar (11 °C) and temperate (15 and 17 °C) lichens. Our results indicate that lichen mycobionts may adapt or acclimate to local environmental conditions either by selecting algae from regional pools or by regulating algal cell numbers (chlorophyll content) within the thallus.