292 resultados para Byrsonima crassa

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed assemblages of Pliocene and Quaternary foraminifera occur within the Quaternary succession of the CRP-1 drillhole. Pliocene foraminifera are not present in the lowermost Unit 4.1. are rare in Unit 3.1 and 2.3, are relatively common in Units 2.2 and 2.1, and are absent in Unit 1.1. Fifteen and twelve species were documented in two of the samples from Units 2.2 and 2.1 respectively. A census count of foraminifera in a sample at 26.89 mbsf (Unit 2.2) indicated that 39% of the tests were from a Pliocene source, with the remaining 61% tests assigned to the in situ Quaternary assemblage. There appears to be a close correlation between the stratigraphic distribution of ice-rafted sediments and the test number and diversity of Pliocene taxa. It is concluded that Pliocene assemblages were not derived from submarine outcrops on Roberts Ridge, but are more likely to have been rafted to the site via major trunk valley drainage systems such as operated within the Mackay and Ferrar glacial valleys. The co-occurrence of marine biota (including foraminifera), fossil wood, pollen, and igneous clasts in the Quaternary succession of CRP-l, points to the marine and terrestrial facies of the Pliocene Sirius Group as a likely source. A major episode of erosion and transport of sediment into the offshore marine basins at about ~1 Ma may have been triggered by dynamism in the ice sheet-glacier system, an episode of regional uplift in the Transantarctic Mountains, sea level oscillations and associated changes in the land-to-sea drainage baselines, or some combination of these factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments from the western and southern part of the Arabian Sea were collected periodically in the spring intermonsoon between March and May 1997 and additionally at the end of the Northeast Monsoon in February 1998. Assemblages of Rose Bengal stained, living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity were analysed after the Northeast Monsoon and short-time changes were recorded. In the western Arabian Sea, foraminiferal numbers increased steadily between March and the beginning of May, especially in the smaller size classes (30-63 µm, 63-125 µm). At the same time, the deepening of the foraminiferal living horizon, variable diversity and rapid variations between dominant foraminiferal communities were observed. We interpret these observations as the time-dependent response of benthic foraminifera to enhanced organic carbon fluxes during and after the Northeast Monsoon. In the southern Arabian Sea, constant low foraminiferal abundances during time, no distinctive change in the vertical distribution, reduced diversity, and more stable foraminiferal communities were noticed, which indicates no or little influence of the Northeast Monsoon to benthic foraminifera in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five holes were drilled at two sites in the Sea of Japan during Ocean Drilling Program (ODP) Leg 128. Site 798 is located on Oki Ridge at a depth of about 900 m. Sediment age at Site 798 ranges from Pliocene to Holocene. Site 799 is located in the Kita-Yamato Trough at depth of 2000 m and below the present calcite compensation depth (CCD); the sediment ranges from Miocene to Holocene in age. Samples from all holes contain benthic foraminifers. Faunal evidence of downslope displacement is frequent in Holes 799A and 799B. The vertical frequency distribution of some dominant species shows that significant faunal changes occur in Holes 798A-C on Oki Ridge. Based on the faunal change and the thickness of sediments, it appears that the Oki Ridge was uplifted more than 1,000 m during last 4 m.y. Benthic foraminifers also demonstrate that the water depth of Site 799 rapidly changed from upper bathyal to lower bathyal during middle Miocene time. The appearance of benthic foraminifer species common to anaerobic environments suggests that the dysaerobic to anaerobic bottom conditions existed during the evolution of the Sea of Japan. Faunal distributions also suggest that the 'Tertiary-type' species recognized in the Neogene strata of the Japan Sea coastal regions disappeared sequentially from the Sea of Japan during Pliocene to late Pleistocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed age model for core 17957-2 of the southern South China Sea was developed based on delta18O, coarse fraction, magnetostratigraphy, and biostratigraphy for the last 1500 kyr. The delta18O record has clear ~100-kyr cycles after the Mid-Pleistocene Revolution (MPR) at the entrance of marine isotopic stage (MIS) 22. Planktonic foraminifera responded to the MPR immediately, showing the increased sea surface temperature (SST) and dissolution after the MPR. Benthic foraminifera did not respond to it until the Brunhes/Matuyama boundary. Since the MPR, the depth of thermocline gradually became shallower until MISs 6-5. This major change within MISs 6-5 was also reflected in the decreased SSTs and increased productivity and Deep Water Mass. Thus two major Pleistocene paleoceanographic changes were found: One was around the MPR; the other occurred within MISs 6-5, which speculatively might be ascribed to the reorganization of surface and deep circulation, possibly induced by tectonic forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower and Upper Cretaceous sediments of the Maurice Ewing Bank, Site 511 (black shales, mudstones, zeolitic clays, and nannofossil chalk and ooze, 361 m thick) are characterized by an assemblage of planktonic foraminifers of low systematic diversity, including over 50 species. Representatives of Hedbergella, Globigerinelloides, Archaeoglobigerina, Whiteinella, Rugoglobigerina, and Heterohelix are predominant; species of Ticinella, Praeglobotruncana, Globotruncana, Schackoina, and Planoglobulina associated with some interbeds occur in smaller numbers. Planktonic foraminifers enable us to subdivide the Cretaceous sediments into Barremian-Aptian, Albian, upper Cenomanian, Turonian, Coniacian-Santonian, Santonian, Campanian, and upper Campanian-Maestrichtian intervals. The Lower Cretaceous (Albian) and Upper Cretaceous (upper Cenomanian-Turonian) are separated by a distinct hiatus and unconformity. In the Upper Cretaceous section, a hiatus may be present at the top of the Campanian. The upper Cenomanian-Santonian sediments are reduced in thickness, whereas the Campanian-Maestrichtian interval is expanded. In the Barremian-Aptian black shales, planktonic foraminifers are very rare: they were deposited in shallow water under anoxic conditions. In the Albian, when sedimentation conditions became oxidizing and the depth increased to 200-400 meters, they became more common. By the end of the Upper Cretaceous, depths appear to increase to 2000 meters. In the interbeds of calcareous sediments, planktonic foraminifers are common; in interbeds of zeolitic clays they are rare or absent (dissolution facies). Alternation of these types of sediments is especially characteristic of the Coniacian-lower Campanian, testifying to abrupt CCD fluctuations. The planktonic foraminifers of the Falkland Plateau belong to the Austral Province of the Southern Hemisphere. In their systematic composition they are extremely similar to microfauna of the Boreal Province of the Northern Hemisphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foraminifera are examined in twenty-six samples from a 44 metre succession of Quaternary glacial sediments recovered from the CRP-1 drillhole on Roberts Ridge, southwestern Ross Sea, Antarctica. In situ marine assemblages were documented in at least three of the six lithostratigraphic units, and it is likely that the remaining three interbedded diamicton units are also marine in origin. Peak foraminiferal diversities are documented in Unit 3.1 (73 species) and Unit 2.2 (32 species). Calcareous benthics dominate the assemblages, but may be accompanied by abundant occurrences of the planktonic Neogloboquadrina pachyderma. Low diversity agglutinated faunas appear in the uppermost strata of Units 4.1 and 2.2. A close relationship between lithofacics and foraminiferal biofacies points to marine environments that alternated between proximity to and distance from active glaciers and iceshelf fronts, with associated variations in salinity, sea-surface ice cover and the levels of rainout from debris-laden ice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the DSDP Legs 1, 11, 13, 17, 25, 27, 32, 36, 41, 43, 44, 50, and 62 the Lower Cretaceous foraminifers have been investigated for biostratigraphical, taxonomical, and palaeoecological purposes. An overview of the cored Lower Cretaceous sections of Leg 1-80 is given. In the Northern Atlantic Ocean characteristic foraminiferal faunas are missing from the Upper Tithonian to the Valanginian due to a marked regression which caused hiatuses. In areas without black shale conditions Valanginian to Barremian medium rich to poor microfaunas with Praedorothia ouachensis (Sigal) of the Praedorothia ouachensis Zone (Valanginian-Hauterivian). The Hauterivian-Aptian interval is characterized by zones of Gavelinella barrerniana, Gaudryina dividens, and Conorotalites aptiensis. During the Albian a world-wide fauna consisting of agglutinated and calcareous foraminifers of the Pseudoclavulina gaultina Zone is established in areas lacking the wide-spread black-shale conditions. The Upper Albian and the Cenomanian are represented by the Gavelinella eenomanica Zone. Some ornamented species of the nodosariids (Citharina, Lenticulina), Gavelinella, Conorotatites, Pleurostomella, Vatvulineria, and Osangularia are of some importance for the biostratigraphy of the Berriasian-Albian interval. The Berriasian to Albian zones introduced for the Tethys and the DSDP by Moullade (1984) could only be of some local importance due to the long stratigraphical range of the foraminiferal species used. In the Indian Ocean an exact stratigraphical age cannot be assigned to the few Neocomian foraminiferal faunas of a cooler sea water (Site 261). These faunas mainly contain primitive agglutinated foraminifers, because in most cases the calcareous tests are dissolved or redeposited. In the Pacific Ocean most of the Berriasian to Aptian microfaunas are of minor biostratigraphical and palaeoecological importance for reasons of poor core recoveries, contaminations or original foraminiferal poverty (black shales). Since the Albian there are somewhat higher-diverse faunas of calcareous and agglutinated foraminifers with index species of the Pseudoclavulina gaultina Zone. As a rule, the boundary Albian/Cenomanian is set by means of planktonic foraminifers because no other foraminifer has its first appearance datum during this interval, except Gavelinella cenornanica. During the Albian very uniform, world-wide foraminiferal faunas without a marked provincialism are obvious.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm**3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.