5 resultados para Butyl Acrylate
em Publishing Network for Geoscientific
Resumo:
During the DRIVE (Diurnal and Regional Variability of Halogen Emissions) ship campaign we investigated the variability of the halogenated very short-lived substances (VSLS) bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) in the marine atmospheric boundary layer in the eastern tropical and subtropical North Atlantic Ocean during May/June 2010. The highest VSLS mixing ratios were found near the Mauritanian coast and close to Lisbon (Portugal). With backward trajectories we identified predominantly air masses from the open North Atlantic with some coastal influence in the Mauritanian upwelling area, due to the prevailing NW winds. The maximum VSLS mixing ratios above the Mauritanian upwelling were 8.92 ppt for bromoform, 3.14 ppt for dibromomethane and 3.29 ppt for methyl iodide, with an observed maximum range of the daily mean up to 50% for bromoform, 26% for dibromomethane and 56% for methyl iodide. The influence of various meteorological parameters - such as wind, surface air pressure, surface air and surface water temperature, humidity and marine atmospheric boundary layer (MABL) height - on VSLS concentrations and fluxes was investigated. The strongest relationship was found between the MABL height and bromoform, dibromomethane and methyl iodide abundances. Lowest MABL heights above the Mauritanian upwelling area coincide with highest VSLS mixing ratios and vice versa above the open ocean. Significant high anti-correlations confirm this relationship for the whole cruise. We conclude that especially above oceanic upwelling systems, in addition to sea-air fluxes, MABL height variations can influence atmospheric VSLS mixing ratios, occasionally leading to elevated atmospheric abundances. This may add to the postulated missing VSLS sources in the Mauritanian upwelling region (Quack et al., 2007).
Resumo:
Sorption of volatile hydrocarbon gases (VHCs) to marine sediments is a recognized phenomenon that has been investigated in the context of petroleum exploration. However, little is known about the biogeochemistry of sorbed methane and higher VHCs in environments that are not influenced by thermogenic processes. This study evaluated two different extraction protocols for sorbed VHCs, used high pressure equipment to investigate the sorption of methane to pure clay mineral phases, and conducted a geochemical and mineralogical survey of sediment samples from different oceanographic settings and geochemical regimes that are not significantly influenced by thermogenic gas. Extraction of sediments under alkaline conditions yielded higher concentrations of sorbed methane than the established protocol for acidic extraction. Application of alkaline extraction in the environmental survey revealed the presence of substantial amounts of sorbed methane in 374 out of 411 samples (91%). Particularly high amounts, up to 2.1 mmol kg**-1 dry sediment, were recovered from methanogenic sediments. Carbon isotopic compositions of sorbed methane suggested substantial contributions from biogenic sources, both in sulfate-depleted and sulfate-reducing sediments. Carbon isotopic relationships between sorbed and dissolved methane indicate a coupling of the two pools. While our sorption experiments and extraction conditions point to an important role for clay minerals as sorbents, mineralogical analyses of marine sediments suggest that variations in mineral composition are not controlling variations in quantities of sorbed methane. We conclude that the distribution of sorbed methane in sediments is strongly influenced by in situ production.
Resumo:
Chloroform extracts of water-soluble organic matter collected in the water column from the surface to the bottom were studied by C-13 and H-1 NMR chromatographic mass spectrometry, and phthalate concentrations were determined by capillary gas-liquid chromatography. More than 14 compounds were found including diethyl phthalate, ethyl butyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate, phthalates with normal C4-C12 chains, phthalates partially esterified with methanol, and others, at total concentrations up to 0.4 mg/l. Possible reasons for presence of phthalates in oceans, sometimes in high concentrations, are discussed.