67 resultados para Bunker Hill, Battle of, Boston, Mass., 1775
em Publishing Network for Geoscientific
Resumo:
Continuous coring in Saanich Inlet (Ocean Drilling Program, ODP Leg 169S), British Columbia, Canada, yielded a detailed record of Late Quaternary climate, oceanography, marine productivity, and terrestrial vegetation. Two sites (1033 and 1034) were drilled to maximum depths of 105 and 118 m, recovering sediments ranging in age from 13,300 to less than 300 14C yr. Earliest sediments consist of dense, largely massive, gray glaciomarine muds with dropstones and sand and silt laminae deposited during the waning stages of glaciation. Deposition of organic-rich olive gray sediments began in the fjord about 12,000 14C yr ago, under well-oxygenated conditions as reflected by the presence of bioturbation and a diverse infaunal bivalve community. At about 10,500 14C yr, a massive, gray unit, 40-50 cm thick, was emplaced in a very short span of time. The unit is marked by a sharp lower contact, a gradational upper contact and an abundance of reworked Tertiary microfossils. It has been interpreted as resulting from massive flood events caused by the collapse of glacial dams in the Fraser Valley of mainland British Columbia. Progressively greater anoxia in bottom waters of Saanich Inlet began about 7000 14C yr ago. This is reflected in the preservation of varved sediments consisting of diatomaceous spring-summer laminae and terrigenous winter laminae. Correlation of the sediments was based on: marked lithologic changes, the presence of massive intervals (reflecting localized sediment gravity flow events), the Mazama Ash, occasional thin gray laminae (indicative of abnormal flood events in nearby watersheds), varve counts between marker horizons, and 71 accelerator mass spectrometry (AMS) radiocarbon dates.
Resumo:
Population genetics of two species of mass copepods Undinula darwini and Calanus australis, with different range types, is investigated. Both species exhibit considerable genetic diversity, especially C. australis (observed heterozygoticity = 0.36), which inhabits a variable biotope in the zone of the Peru current. Samples of both species exhibited highly significant genetic heterogeneity as well as heterozygote deficiency compared with the situation expected from the Hardy-Weinberg law. Contribution of distance isolation to genetic differentiation of populations is estimated. Gene drift is discussed as a source of heterogeneity in populations of planktic copepods. Possible aspects of population genetic research on marine plank-tic crustaceans are discussed.
Resumo:
The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59-80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219-236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day**-1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.