302 resultados para British Columbia Margin
em Publishing Network for Geoscientific
Resumo:
Concretions of iron and manganese oxides and hydrous oxidesóobjects commonly called manganese nodulesóare widely distributed not only on the deep-sea floor but also in shallow marine environments1. Such concretions were not known to occur north of Cape Mendocino in the shallow water zones bordering the North-East Pacific Ocean until the summer of 1966 when they were recovered by one of us (J. W. M.) in dredge samples from Jervis Inlet, a fjord approximately 50 miles north-west of Vancouver, British Columbia.
Resumo:
A new, high-resolution planktonic foraminiferal Mg/Ca-based ocean temperature record has been generated for deep sea core MD02-2496, sited offshore of Vancouver Island, Western Canada during the last deglaciation (21-12 ka). The relationship between Cordilleran Ice Sheet (CIS) retreat and changing regional ocean temperatures has been reconstructed through glaciomarine sediments in MD02-2496 that capture tidewater glacier response to surface ocean thermal forcing. At CIS maximum extent, the marine margin of the ice sheet advanced onto the continental shelf. During this interval, ocean temperatures recorded by surface ocean dwelling Globigerina bulloides remained a relatively constant ~7.5°C while subsurface dwelling Neogloboquadrina pachyderma (s.) recorded temperatures of ~5°C. These ocean temperatures were sufficiently warm to induce significant melt along the tidewater ice terminus similar to modern Alaskan tidewater glacial systems. During the deglacial retreat of the CIS, the N. pachyderma temperature record shows two distinct warming steps of ~2 and 2.5°C between 17.2-16 and 15.5-14 ka respectively, coincident with ice rafting events from the CIS, while G. bulloides records an ~3°C warming from 15 to14 ka. We hypothesize that submarine melting resulting from relatively warm ocean temperatures was an important process driving ice removal from CIS tidewater glaciers during the initial stages of deglaciation.
Resumo:
Habitat fragmentation alters the edges of remnant habitat patches. We examined changes in the plant community and soil in relation to distance from edge and edge type for shrub-steppe and pine savannah grasslands in southern British Columbia, Canada. Community composition showed significant nonlinear relationships with distance-to-edge more frequently at paved roads and fruit crops than at dirt roads or control sites (i.e., in the interior of grassland patches), with changes typically extending 25-30 m. More exotic species and fewer native species were found near edges, and edges showed decreased cryptogam cover and increased bare ground, especially near paved roads. The soil factors that best predicted compositional changes were soil pH and Cu/Mn at paved roads, soil pH and nitrogen at fruit crops, and soil resistance at dirt roads. Variation partitioning suggested that both direct (e.g., propagule pressure) and indirect (environmental change) factors mediated edge-related community changes, and provided evidence that nonlinear responses at developed edges were not due to natural gradients. Given the range of grassland patch sizes in this region (many patches 1-100 ha), the edge effects we observed represent a considerable loss of "core" habitat, which must be accounted for in conservation planning and site restoration.
Resumo:
A study of the distribution, dispersal and composition of surficial sediments in the Strait of Georgia, B.C., has resulted in the understanding of basic sedimentologic conditions within this area. The Strait of Georgia is: a long, narrow, semi-enclosed basin with a restricted circulation and a single, main, sediment source. The Fraser. River supplies practically all the sediment now being deposited in the Strait of Georgia, the bulk of it during the spring and summer freshet. This river is building a delta into the Strait from the east side near the south end. Ridges of Pleistocene deposits within the Strait and Pleistocene material around the margins, like bedrock exposures, provide local sources of sediment of only minor importance. Rivers and streams other than the Fraser contribute insignificant quantities of sediment to the Strait. Sandy sediments are concentrated in the vicinity of the delta, and in the area to the south and southeast. Mean grain size decreases from the delta toward the northwest along the axis of the Strait, and basinwards from the margins. Silts and clays are deposited in deep water west and north of the delta front, and in deep basins northwest of the delta. Poorly sorted sediments containing a gravel component are located near tidal passes, on the Vancouver Island shelf area, on ridge tops within the Strait, and with sandy sediments at the southeastern end of the study area. The Pleistocene ridges are areas of non-deposition, having at most a thin veneer of modern mud on their crests and upper flanks. The southeastern end of the study area contains a thick wedge of shandy sediment which appears to be part of an earlier delta of the Fraser River. Evidence suggests that it is now a site of active submarine erosion. Sediments throughout the Strait are compositionally extremely similar, with-Pleistocene deposits of the Fraser River drainage basin providing the principal, heterogeneous source. Gravels and coarse sands are composed primarily of lithic fragments, dominantly of dioritic to granodloritlc composition. Sand fractions exhibit increasing simplicity of mineralogy with decreasing grain-size. Quartz, felspar, amphibole and fine-grained lithic fragments are the dominant constituents of the finer sand grades. Coarse and medium silt fractions have compositions similar to the fine sands. Fine silts show an increase in abundance of phyllosilicate material, a feature even more evident in the clay-size fractions on Montmorillonite, illite, chlorite, quartz and feldspar are the main minerals in the coarse clay fraction, with minor mixed-layer clays and kaolinite. The fine clay fraction is dominated by montmorillonite, with lesser amounts of illite and chlorite. The sediments have high base-exchange capacities, related to a considerable content of montmorillonite. Magnesium is present in exchange positions in greater quantity in Georgia Strait sediments than in sediments from the Fraser River, indicating a preferential uptake of this element in the marine environment. Manganese nodules collected from two localities in the Strait imply slow sediment accumulation rates at these sites. Sedimentation rates on and close to the delta, and in the deep basins to the northwest, are high.
Resumo:
On August 6, 2010, a large (~50 Mm**3) debris avalanche occurred on the flank of Mount Meager in the southern Coast Mountains of British Columbia, Canada. We studied the deposits to infer the morphodynamics of the landslide from initiation to emplacement. Structure from motion (SfM) photogrammetry, based on oblique photos taken with a standard SLR camera during a low helicopter traverse, was used to create high-resolution orthophotos and base maps. Interpretation of the images and maps allowed us to recognize two main rheological phases in the debris avalanche. Just below the source area, in the valley of Capricorn Creek, the landslide separated into two phases, one water-rich and more mobile, and the other water-poor and less mobile. The water-rich phase spread quickly, achieved high superelevation on the valley sides, and left distal scattered deposits. The main water-poor phase moved more slowly, did not superelevate, and formed a thick continuous deposit (up to ~30 m) on the valley floor. The water-poor flow deposit has structural features such as hummocks, brittle-ductile faults, and shear zones. Our study, based on a freshly emplaced deposit, advances understanding of large mass movements by showing that a single landslide can develop multiple rheology phases with different behaviours. Rheological evolution and separation of phases should always be taken into account to provide better risk assessment scenarios.