3 resultados para Brazilian Communication Thought History
em Publishing Network for Geoscientific
Resumo:
Site 534 reflects a complex interplay of global, basinal, and local influences on sedimentation during the Callovian and Late Jurassic. Rifting and rapid subsidence of the continental margins of the North Atlantic-Tethys seaway occurred during the late Early Jurassic (Sinemurian-Pliensbachian), but rapid spreading between the North American margin (Blake Spur Ridge and magnetic lineation) and the northwest African margin did not commence until the Bathonian or earliest Callovian. Site 534, drilled on marine magnetic anomaly "M-28" of Bryan et al. (1980), was initially about 150 km from either continental margin. The ?middle Callovian basal sediments are dusky red silty marl. Callovian transgression led to active carbonate platforms on the margin, recorded at Site 534 as a rise in the CCD (carbonate compensation depth), then arrival of lime-rich turbidites from the Blake Plateau platform across the Blake Spur Ridge. The host pelagic sediment is greenish black, organic-rich, radiolarian-rich, silty claystone. Hydrothermal activity on the nearby spreading ridge enriched this lower unit in metals. In the Oxfordian, the input of terrestrial silt rapidly diminished; radiolarians or other bioclasts were not preserved. The dark variegated claystone has fine-grained marl and reddish claystone turbidite beds. The late Callovian-Oxfordian Western Tethys has radiolarian chert deposition, marine hiatuses, or organic-rich sediments. The Kimmeridgian and Tithonian had a stable or receding sea level. Near the end of the Jurassic many of the carbonate platforms of the margins were buried beneath prograding fan or alluvial deposits. Carbonate deposition shifted to the deep sea. Site 534 records the deepening of the CCD and ACD (aragonite compensation depth) during the Kimmeridgian and early Tithonian, then a rise of the ACD in the middle Tithonian. Similar trends occurred throughout the Western Tethys-Atlantic. High nannofossil productivity of the seaway led to deposition of very widespread white micritic limestone in the late Tithonian-Berriasian. The underlying sediment had a slower deposition rate of carbonate, therefore its higher clay and associated Fe content produced a red marl. A short sea-level incursion occurred on the Atlantic margins during the Kimmeridgian and is reflected in the Site 534 greenish gray marl unit by numerous turbidite beds of shallow-water carbonates.
Resumo:
Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.
Resumo:
Calmette Bay within Marguerite Bay along the western side of the Antarctic Peninsula contains one of the most continuous flights of raised beaches described to date in Antarctica. Raised beaches extend to 40.8 m above sea level (masl) and are thought to reflect glacial isostatic adjustment due to the retreat of the Antarctic Peninsula Ice Sheet. Using optically stimulated luminescence (OSL), we dated quartz extracts from cobble surfaces buried in raised beaches at Calmette Bay. The beaches are separated into upper and lower beaches based on OSL ages, geomorphology, and sedimentary fabric. The two sets of beaches are separated by a prominent scarp. One of our OSL ages from the upper beaches dates to 9.3 thousand years ago (ka; as of 1950) consistent with previous extrapolation of sea-level data and the time of ice retreat from inner Marguerite Bay. However, four of the seven ages from the upper beaches date to the timing of glaciation. We interpret these ages to represent reworking of beaches deposited prior to the Last Glacial Maximum (LGM) by advancing and retreating LGM ice. Ages from the lower beaches record relative sea-level fall due to Holocene glacial-isostatic adjustment. We suggest a Holocene marine limit of 21.7 masl with an age of 5.5-7.3 ka based on OSL ages from Calmette Bay and other sea-level constraints in the area. A marine limit at 21.7 masl implies half as much relative sea-level change in Marguerite Bay during the Holocene as suggested by previous sea-level reconstructions. No evidence for a relative sea-level signature of neoglacial events, such as a decrease followed by an increase in RSL fall due to ice advance and retreat associated with the Little Ice Age, is found within Marguerite Bay indicating either: (1) no significant neoglacial advances occurred within Marguerite Bay; (2) rheological heterogeneity allows part of the Antarctic Peninsula (i.e. the South Shetland Islands) to respond to rapid ice mass changes while other regions are incapable of responding to short-lived ice advances; or (3) the magnitude of neoglacial events within Marguerite Bay is too small to resolve through relative sea-level reconstructions. Although the application of reconstructing sea-level histories using OSL-dated raised beach deposits provides a better understanding of the timing and nature of relative sea-level change in Marguerite Bay, we highlight possible problems associated with using raised beaches as sea-level indices due to post-depositional reworking by storm waves.