2 resultados para Box-Jenkins Approach

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geological reconstructions and general circulation models suggest that the onset of both Northern Hemisphere glaciation, 2.7 Myr ago, and convection of Labrador Sea Water (LSW) were caused by the closure of the Panama Gateway ~4.5 Myr ago. Time series data that have been obtained from studies of ferromanganese crusts from the northwestern Atlantic suggest that radiogenic isotopes of intermediate ocean residence time (Pb and Nd) can serve as suitable tracers to reconstruct these events. However, it has been unclear until now as to whether the changes that have been observed in isotope composition at this time are the result of increased thermohaline circulation or due to the effects of increased glacial weathering. In this paper we adopt a box model approach to demonstrate that the shifts in radiogenic isotope compositions are unlikely to be due to changes in convection in LSW but can be explained in terms of increases of erosion levels due to the glaciation of Greenland and Canada. Furthermore, we provide experimental evidence for the incongruent release of a labile fraction of strongly radiogenic Pb and nonradiogenic Nd from continental detritus eroding into the Labrador Sea. This can be attributed to the glacial weathering of old continents and accounts for the paradox that one of the areas of the world most deficient in radiogenic Pb should provide such a rich supply of radiogenic Pb to the oceans. An important general conclusion is that the compositions of radiogenic isotopes in seawater are not always a reflection of their continental sources. Perhaps more importantly, the transition from chemical weathering to mechanical erosion is likely to result in significant variations in radiogenic tracers in seawater.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many marine radiogenic isotope records show both spatial and temporal variations, reflecting both the degree of mixing of distinct sources in the oceans and changes in the distribution of chemical weathering on the continents. However, changes in weathering and transport processes may themselves affect the composition of radiogenic isotopes released into seawater. The provenance of physically weathered material in the Labrador Sea, constrained through the use of Ar-Ar ages of individual detrital minerals, has been used to estimate the relative contributions of chemically weathered terranes releasing radiogenic isotopes into the Labrador Sea. A simple box-model approach for balancing observed Nd-isotope variations has been used to constrain the relative importance of localised input in the Labrador Sea, and the subsequent mixing of Labrador Sea Water into North Atlantic Deep-Water. The long-term pattern of erosion and deep-water formation around the North Atlantic seems to have been a relatively stable feature since 1.5 Ma, although there has been a dramatic shift in the nature of physical and chemical weathering affecting the release of Hf and Pb isotopes. The modelled Nd isotopes imply a relative decrease in water mass advection into the Labrador Sea between 2.4 and 1.5 Ma, accompanied by a decrease in the rate of overturning, possibly caused by an increased freshwater input into the Labrador Sea.