6 resultados para Bounds

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Downhole temperature and thermal conductivity measurements in core samples recovered during Legs 127 and 128 in the Japan Sea resulted in five accurate determinations of heat flow through the seafloor and accurate estimates of temperature vs. depth over the drilled sections. The heat flows measured at these sites are in excellent agreement with nearby seafloor measurements. Drilling sampled basaltic rocks that form the acoustic basement in the Yamato and Japan basins and provided biostratigraphic and isotopic estimates of the age of these basins. The preliminary age estimates are compared with predicted heat flow values for two different thermal models of the lithosphere. A heat flow determination from the crest of the Okushiri Ridge yielded an anomalously high heat flow of 156 mW/m**2. This excessive heat flow value may have resulted from frictional heating on an active reverse fault that bounds the eastern side of the Ridge. Accurate estimates of sedimentation rates and temperatures in the sedimentary section combined with models of basin formation provide an opportunity to test thermochemical models of silica diagenesis. The current location of the opal-A/opal CT transition in the sedimentary section is determined primarily by the thermal history of the layer in which the transition is now found. Comparison of the ages and temperatures of the layer where the opal-A/opal-CT is found today is compatible with an activation energy of 14 to 17 kcal/mole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characteristic remanent magnetizations derived from detailed thermal and alternating-field demagnetization of basalts recovered at Ocean Drilling Program (ODP) Site 807 on the Ontong Java Plateau reveal constant normal polarity consistent with paleontological ages from overlying sediments, suggesting deposition in early Aptian times at the beginning of the Cretaceous Normal Polarity Superchron (K-N). The paleomagnetic data can be divided into 14 distinct inclination groups, which together define a paleolatitude of 18°S, some 16° shallower than expected from a Pacific apparent polar wander path (APWP) based on nonsedimentary data. The data display a trend in paleomagnetic inclination, showing shallower values with increasing depth. We conclude that this trend is a result of local tectonic tilting during the waning phases of volcanism on the plateau. Hotspot-based plate reconstructions for the Early Cretaceous place the Ontong Java Plateau on the Louisville hotspot, presently located at 51°S, whereas the paleolatitude for Site 807 based on the Pacific APWP is 34°S. Because the nominal mean inclination from Site 807 and values derived from Deep Sea Drilling Project (DSDP) sediments of other sites predict shallower paleolatitudes for the Ontong Java Plateau, values from the Pacific APWP provide lower bounds on true polar wander. Considering mantle plume sources on the southern and northern portions of the plateau (DSDP Site 288 and ODP Site 807, respectively), the Louisville hotspot appears to have moved 9°-17° to the south relative to the spin axis since the Early Cretaceous. This sense of motion is consistent with previous results for the Suiko Seamount (65 Ma) of the Hawaiian-Emperor Chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DATED-1 comprises a compilation of dates related to the build-up and retreat of the Eurasian (British-Irish, Scandinavian, Svalbard-Barents-Kara Seas) Ice Sheets, and time-slice maps of the Eurasian Ice sheet margins. Dates are sourced from the published literature. Ice margins are based on published geological and chronological data and include uncertainty bounds (maximum, minimum) as well as what we consider to be the most-credible (mc) based on the available evidence. DATED-1 has a census date of 1 January 2013. Full description and caveats for use are given in: Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I. (2015) The last Eurasian Ice Sheets - a chronological database and time-slice reconstruction, DATED-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniaxial strain consolidation experiments were conducted to determine elastic and plastic properties and to estimate the permeability of sediments from 0 to 200 meters below seafloor at Ocean Drilling Program Sites 1194 and 1198. Plastic deformation is described by compression indices, which range from 0.19 to 0.37. Expansion indices, the elastic deformation measured during unload/reload cycles on samples, vary from 0.02 to 0.029. Consolidation experiments provide lower bounds on permeability between 5.4 x 10**-16 m**2 and 1.9 x 10**-18 m**2, depending on the consolidation state of the sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isotope-geochronological study of Neogene-Quaternary igneous rocks from the Urup Island (Greater Kuril Ridge) was carried out. It was established that magmatic activity in the island developed during the last 10 my and it was not interrupted by long inactive periods. K-Ar data obtained along with results of diatomic analysis are in good agreement with the regional stratigraphic scheme of Paleogene and Neogene deposits and the intraregional correlation scheme of magmatic rocks in the Kuril Islands, which are developed for the State Geologic Map, scale 1:200 000 (Second edition). In the present-day territory of the Urup Island, the earliest Late Miocene - Early Pliocene (10.5-4.5 Ma) magmatic stage was associated with formation of the Rybakovsky andesite volcanic complex, which is represented by an effusive series (Rybakovskaya Suite) and subvolcanic rocks. Actually at the same time (6.6-4.7 Ma), but at a great depth, intrusive bodies of the Prasolovsky plagiogranite-diorite plutonic complex were intruded. The Pliocene stage of magmatism in the Urup Island is characterized by formation of rocks of the Kamuysky dacitic volcanic complex (4.0-2.1 Ma). This complex is locally represented only by subvolcanic acidic bodies, and its occurrence in the island is limited. During the Pliocene - Early Neopleistocene stage of magmatism (3.0-0.8 Ma) the Fregatsky andesibasalt volcanic complex was formed in the Urup Island. This complex includes effusive series (Fregatskaya unit) and subvolcanic bodies. Quaternary time in the Urup Island is characterized by eruptive activity in subaerial conditions with formation of effusive-pyroclastic intermediate-basic rocks of the Bogatyrsky Middle Neopleistocene - Holocene complex (<0.5 Ma). Rocks of this complex formed stratovolcano cones. Pyroclastic rocks of the Rokovsky dacitic volcanic complex were erupted simultaneously. The mentioned magmatic complexes of the Urup Island well correlate with the distinguished magmatic complexes within the bounds of contiguous insular blocks of the Greater Kuril Arc and confirm uniform geologic history of magmatic development of the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tuamotu Archipelago in French Polynesia is a Co-rich ferromanganese crust province. The NODCO I survey (1986) provided detailed data on Co-rich crusts in this environment through the exploration of a restricted zone in the vicinity of Niau Island on the southern flank of the archipelago. This flat zone is a fossil atoll which, under the action of subsidence and tectonic movements, has collapsed to a water depth of 1000 m. The plateau is partially filled with coralline sediments. Outcrops of ferromanganese crusts, associated with rare nodules and slabs, are located on the inner side of the coral reef which bounds the ancient lagoon. The successive episodes of plateau history have been recorded in the different growth periods of the ferromanganese crusts. The crusts, nodules and slabs belong to the same morphological, mineralogical and geochemical family. Cobalt contents vary from 0.7 to 1.3%. The highest values belong to the thinnest ferromanganese crusts which are located on the flanks of the plateau. Average Ni contents are about 0.5% and Cu contents about 0.1%; Pt contents vary from 0.2 to 1.3 ppm. Platinum and Co are enriched in the outermost oxide zone of the crusts. Poorly crystallized -MnO2 is the dominant mineralogical phase. Cobalt enrichment seems to be related to -MnO2 particle size. The greatest contents are located in the finest material where the particle size is less than 0.1 m. Cobalt-rich crusts of the Niau Zone have the same characteristics as the Co-rich crusts from the Equatorial North Pacific. They differ in original setting: the reefal environment in the Niau Zone is superficial, overlying a volcanic substrate.