4 resultados para Bohor
em Publishing Network for Geoscientific
Resumo:
We have found trace inclusions of Ni-rich magnesiowüstite within grains of magnesioferrite spinel recovered from Cretaceous/Tertiary boundary sediments from DSDP Site 596, South Pacific (23°51.20'S, 169°39.27'W) and DSDP Site 577, North Pacific (3°6.51'N, 157°43.40'E). Measured compositions of these inclusions range from (Mg_0.85Ni_0.74Fe_0.17)O to (Mg_0.74Ni_0.09Fe_0.17)O. Coexisting magnesioferrite and magnesiowüstite can only crystallize from ultramafic, refractory, Mg-rich liquids with Mg/Si > 2 (atom ratio). Such liquid compositions cannot form as a result of fractional crystallization and are unknown to occur as a result of terrestrial igneous processes or meteoroid ablation. We infer that these minerals crystallized from liquid droplets that equilibrated with silicate vapor at high temperatures (probably >2300°C), resulting in fractionation of volatile SiO2 from more refractory MgO. The most plausible source of this high-temperature vapor is in the fireball of the major impact event that terminated the Cretaceous.
Resumo:
Sediments from the Cretaceous/Tertiary (K/T) boundary at Deep Sea Drilling Project Site 596 record accumulation of pelagic clays at about lat 45°S,in the center of the ancestral South Pacific. The K/T boundary in this region is characterized by oxidized, thoroughly bioturbated sediments containing large amounts of Ir and relict high-pressure and high-temperature mineral phases. The net Ir fluence (320 ng/cm**2) is among the largest on Earth, and the number of shocked quartz grains >30 µm in size (~1800/cm**2) exceeds that in all localities outside of North America.