218 resultados para Body water volume
em Publishing Network for Geoscientific
Resumo:
Global change in land water storage and its effect on sea level is estimated over a 7-year time span (August 2002 to July 2009) using space gravimetry data from GRACE. The 33 World largest river basins are considered. We focus on the year-to-year variability and construct a total land water storage time series that we further express in equivalent sea level time series. The short-term trend in total water storage adjusted over this 7-year time span is positive and amounts to 80.6 ± 15.7 km**3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Zambezi, Orinoco and Ob basins. The largest negative contributions (water deficit) come from the Mississippi, Ganges, Brahmaputra, Aral, Euphrates, Indus and Parana. Expressed in terms of equivalent sea level, total water volume change over 2002-2009 leads to a small negative contribution to sea level of -0.22 ± 0.05 mm/yr. The time series for each basin clearly show that year-to-year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. We also compare the interannual variability of total land water storage (removing the mean trend over the studied time span) with interannual variability in sea level (corrected for thermal expansion). A correlation of ~0.6 is found. Phasing, in particular, is correct. Thus, at least part of the interannual variability of the global mean sea level can be attributed to land water storage fluctuations.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
During Ice Station POLarstern (ISPOL; R.V. Polarstern cruise ANT XXII/2, November 2004-January 2005), hydrographic and tracer observations were obtained in the western Weddell Sea while drifting closely in front of the Larsen Ice Shelf. These observations indicate recently formed Weddell Sea Bottom Water, which contains significant contributions of glacial melt water in its upper part, and High-Salinity Shelf Water in its lower layer. The formation of this bottom water cannot be related to the known sources in the south, the Filchner-Ronne Ice Shelf. We show that this bottom water is formed in the western Weddell Sea, most likely in interaction with the Larsen C Ice Shelf. By applying an Optimum Multiparameter Analysis (OMP) using temperature, salinity, and noble gas observations (helium isotopes and neon), we obtained mean glacial melt-water fractions of about 0.1% in the bottom water. On sections across the Weddell Gyre farther north, melt-water fractions are still on the order of 0.04%. Using chlorofluorocarbons (CFCs) as age tracers, we deduced a mean transit time between the western source and the bottom water found on the slope toward the north (9±3 years). This transit time is larger and the inferred transport rate is small in comparison to previous findings. But accounting for a loss of the initially formed bottom water volume due to mixing and renewal of Weddell Sea Deep Water, a formation rate of 1.1±0.5 Sv in the western Weddell Sea is plausible. This implies a basal melt rate of 35±19 Gt/year or 0.35±0.19 m/year at the Larsen Ice Shelf. This bottom water is shallow enough that it could leave the Weddell Basin through the gaps in the South Scotia Ridge to supply Antarctic Bottom Water. These findings emphasize the role of the western Weddell Sea in deep- and bottom-water formation, particularly in view of changing environmental conditions due to climate variability, which might induce enhanced melting or even decay of ice shelves.
Resumo:
Oceanographic research in the Amvrakikos Gulf in Western Greece, a semi-enclosed embayment isolated from the Ionian Sea by a narrow, shallow sill, has shown that it is characterised by a fjord-like oceanographic regime. The Gulf is characterised by a well-stratified two layer structure in the water column made up of a surface layer and a bottom layer that are separated by a strong pycnocline. At the entrance over the sill, there is a brackish water outflow in the surface water and a saline water inflow in the near-bed region. This morphology and water circulation pattern makes the Amvrakikos Gulf the only Mediterranean Sea fjord. The investigations have also shown that the surface layer is well oxygenated, whereas in the pycnocline, the dissolved oxygen (DO) declines sharply and finally attains a value of zero, thus dividing the water column into oxic, dysoxic and anoxic environments. At the dysoxic/anoxic interface, at a depth of approximately 35 m, a sharp redox cline develops with Eh values between 0 and 120 mV occurring above and values between 0 and -250 mV occurring below, where oxic and anoxic biochemical processes prevail, respectively. On the seafloor underneath the anoxic waters, a black silt layer and a white mat cover resembling Beggiatoa-like cells are formed. The dysoxic/anoxic conditions appeared during the last 20 to 30 years and have been caused by the excessive use of fertilisers, the increase in animal stocks, intensive fish farming and domestic effluents. The inflicted dysoxia/anoxia has resulted in habitat loss on the seafloor over an area that makes up just over 50% of the total Gulf area and approximately 28% of the total water volume. Furthermore, anoxia is also considered to have been responsible for the sudden fish mortality which occurred in aquaculture rafts in the Gulf in February 2008. Therefore, anoxic conditions can be considered to be a potential hazard to the ecosystem and to the present thriving fishing and mariculture industry in the Gulf.
Resumo:
On DSDP Leg 84, gas hydrates were found at three sites (565, 568, and 570) and were inferred, on the basis of inorganic and organic geochemical evidence, to be present at two sites (566 and 569); no evidence for gas hydrates was observed at Site 567. Recovered gas hydrates appeared as solid pieces of white, icelike material occupying fractures in mudstone or as coarse-grained sediment in which the pore space exhibited rapid outgassing. Also a 1.05-m-long core of massive gas hydrate was obtained at Site 570. Downhole logging indicated that this hydrate was actually 3 to 4 m thick. Measurements of the amount of methane released during the decomposition of these recovered samples clearly showed that gas hydrates had been found. The distribution of evolved hydrocarbon gases indicated that Structure I gas hydrates were present because of the apparent inclusion of methane and ethane and exclusion of propane and higher molecular weight gases. The water composing the gas hydrates was fresh, having chlorinities ranging from 0.5 to 3.2 per mil. At Sites 565, 568, and 570, where gas hydrates were observed, the chlorinity of pore water squeezed from the sediment decreased with sediment depth. The chlorinity profiles may indicate that gas hydrates can often occur finely dispersed in sediments but that these gas hydrates are not recovered because they do not survive the drilling and recovery process. Methane in the gas hydrates found on Leg 84 was mainly derived in situ by biogenic processes, whereas the accompanying small amounts of ethane likely resulted from low-temperature diagenetic processes. Finding gas hydrates on Leg 84 expands observations made earlier on Leg 66 and particularly Leg 67. The results of all of these legs show that gas hydrates are common in landward slope sediments of the Middle American Trench from Mexico to Costa Rica.
Table 2. Individual concentrations of HCH in surface seawater in the Atlantic and the Southern Ocean
Resumo:
During the "Meteor"-Expedition to the Persian Gulf in March-May 1965, approximately 300 samples were collected. Most of them have been already studied by various authors in sedimentological as well as micropaleontological respects. 49 samples were selected for ostracode studies. These samples are arranged to form a long-axis section ("Laengsprofil"), and 4 shorter cross-profiles, perpendicular to the long-axis profile in the Persian Gulf and Gulf of Oman. 52 species of ostracodes in this area were specifically determined; 39 of them are described under open nomenclature. 13 species are already known from surrounding sea areas: 2 species from the Red Sea; 2 species from the east coast of Africa; 1 species from the Mediterranean Sea; and others from the Indian and Pacific Oceans. 12 species show close relationships to species from the Indopacific Ocean. The ostracode species found in the area can be grouped after the method of BRAUN-BLANQUT into 2 bioassociations. Association 1 with the following 4 characteristic species : Cytherella cf. pulchra, Loxoconcha sp. A, Neomonoceratina sp. A, Alocopocythere reticulata. Association 2 with 1 characteristic species: Ruggieria (Ruggieria) sp. B. The association 1 is widespread in the entire studied area of the Persian Gulf, where it is considered to characterize the shallow water region down to 200 m. The association 2 is restricted to the deeper water below 200 m of the inner part of the Oman Gulf. Only a few species known from the shallow water association of the Persian Gulf are present. Within the two ostracode associations mentioned above 4 zones from the total studied area could be related to the water depth. The zones A-D are characterized more or less readily by the relative abundance of certain species: Zone A : 7-30 m depth, on substrates of poorly coarse-grained clayey marl; Zone B: 30-94 m depth, on substrates of richly coarse-grained calcareous marl; Zone C: 94-1961208 m depth, on substrates of richly coarse-grained calcareous marl; Zone D: 196/208-500 m depth, on substrates of calcareous clay, poor in benthos. The regional and bathymetric distribution of the ostracode fauna in the area studied was compared in relation to 10 environmental factors: water depth, temperature, salinity, water density, O2-concentration, phosphate-silica contents, pH-values, stratification of the water body, water currents and type of sediments. The major environmental factors which appear to control the ostracode distribution are water depth (as a complex factor), O2-concentration and the type of sediment. At 3 stations (GIK01058, GIK01074 and GIK01204) species of the shallow water association were found together with a few bathyal species. These stations are situated at the outer Biaban shelf, in an area where the bottom water of the Persian Gulf flows down the slope towards the Oman Gulf. Several samples of the Zone B in the major part of the Persian Gulf show also a high species diversity containing a high percentage of subfossil ostracode carapaces. It is probable that the recent biocoenosis has been mixed with a late quarternary thanatocoenosis.
Resumo:
Acidification of the oceans by increasing anthropogenic CO2 emissions will cause a decrease in biogenic calcification and an increase in carbonate dissolution. Previous studies have suggested that carbonate dissolution will occur in polar regions and in the deep sea where saturation state with respect to carbonate minerals (Omega) will be <1 by 2100. Recent reports demonstrate nocturnal carbonate dissolution of reefs, despite a Omega a (aragonite saturation state) value of >1. This is probably related to the dissolution of reef carbonate (Mg-calcite), which is more soluble than aragonite. However, the threshold of Omega for the dissolution of natural sediments has not been clearly determined. We designed an experimental dissolution system with conditions mimicking those of a natural coral reef, and measured the dissolution rates of aragonite in corals, and of Mg-calcite excreted by other marine organisms, under conditions of Omega a > 1, with controlled seawater pCO2. The experimental data show that dissolution of bulk carbonate sediments sampled from a coral reef occurs at Omega a values of 3.7 to 3.8. Mg-calcite derived from foraminifera and coralline algae dissolves at Omega a values between 3.0 and 3.2, and coralline aragonite starts to dissolve when Omega a = 1.0. We show that nocturnal carbonate dissolution of coral reefs occurs mainly by the dissolution of foraminiferans and coralline algae in reef sediments.
Resumo:
Coccolithophores are an important component of the Earth system, and, as calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO2 levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce "a transition in dominance from more to less heavily calcified coccolithophores" [Ridgwell A, et al., (2009) Biogeosciences 6:2611-2623]. A recent observational study [Beaufort L, et al., (2011) Nature 476:80-83] also suggested that coccolithophores are less calcified in more acidic conditions. We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO3 saturation are lowest in winter, the E. huxleyi population shifts from <10% (summer) to >90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO2 world.
Resumo:
The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (<5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv, shipboard ADCP, 75kHz) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified to be followed by zooplankton in response to the eddy OMZ: i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy i), ii) and iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.