92 resultados para Blake (Ship)
em Publishing Network for Geoscientific
Resumo:
Using gas chromatography technique we examined molecular composition of n-alkanes and lignin from bottom sediments of a core 385 cm long collected in the region of the Blake-Bahama Abyssal Plain. We determined C_org concentrations and lignin composition in soils, mangrove roots and leaves, in algae Sargassum and Ascophyllum, in corals and timber of a sunken ship; they were compared with data on lignin in bottom sediments. Mixed planktonogenic and terrigenous origin of organic matter in the core was proved with different proportions of terrigenous and planktonogenic components at different levels. Multiple changes in dominating sources of organic matter over a period required for accumulation of a four meter thick sedimentary sequence (about 4 m) are shown as obtained from changes in composition and contents of organic-chemical markers referring to classes of n-alkanes and phenols.
Resumo:
In late June and July, 1967, the Deep Submergence Research Vehicle (DSRV) ALVIN, aboard its mother ship, LULU, proceeded from the spring base of operations, Nassau, to its home port of Woods Hole. During this trip, from July 2 to July 14, a series of five dives were made by ALVIN on the Blake Plateau off Georgia and South Carolina, and on the continental slope north of Cape Hatteras. One of the objectives of the dive was to investigate the manganese and phosphate deposits of the Blake Plateau.
Resumo:
Benthic foraminiferal assemblages are a widespread tool to understand changes in organic matter flux and bottom-water oxygenation and their relation to paleoceanographic changes in the Upper Cretaceous oceans. In this study, assemblage data (diversity, total number, and number per species and gram) from Deep Sea Drilling Project (DSDP) Site 390 (Blake Nose, western North Atlantic) were processed for the lower Maastrichtian (Globotruncana falsostuarti - Gansserina gansseri Planktic Foraminiferal Zone). These data document significant changes in nutrient flux to the sea floor as well as bottom-water oxygenation during this time interval. Parallel to the observed changes in the benthic foraminiferal assemblages the number of inoceramid shells decreases, reflecting also a significant increase in bottom-water oxygenation. We speculate, that these data could reflect the onset of a shift from warmer low-latitude to cooler high-latitude deep-water sources. This speculation will predate the major reorganization of the oceanic circulation resulting in a circulation mode similar to today at the Early/Late Maastrichtian boundary by ~1 Ma and therefore improves our understanding of Late Cretaceous paleoceanography.
Resumo:
The muricate planktonic foraminiferal genera Morozovella and Acarinina were abundant and diverse during the upper Palaeocene to middle Eocene and dominated the tropical and subtropical assemblages. A significant biotic turnover in planktonic foraminifera occurred in the latest middle Eocene with a notable reduction in the acarininid lineage and the extinction of the morozovellids. These genera are extensively employed as palaeoclimatic and biostratigraphic markers and, therefore, this turnover episode is an important event in the record of the Cenozoic planktonic foraminifera. Sediments from the western North Atlantic (Ocean Drilling Program Site 1052) were examined in order to investigate these extinction events, in terms of both timing and mechanisms. Biostratigraphic events of the middle and late Eocene have been examined with a sampling resoluti on of approximately 3 kyr. These have been calibrated to the magneto- and astrochronology to accurately define the timing of key biostratigraphic events, particularly the extinction of Morozovella spinulosa which is a distinct biomarker for late middle Eocene sediments. High-resolution biostratigraphy reveals that the extinctions in the muricate group occurred in a stepwise form. The large acarininids (Acarinina praetopilensis) terminate 10 kyr prior to the extinction of M. spinulosa and small acarininids (Acarinina medizzai and Acarinina echinata) continue into the upper Eocene. High-resolution stable isotope analyses have been conducted on planktonic and benthic foraminifera from the western North Atlantic to reconstruct sea surface temperatures (SSTs) and deep water temperatures and the structure of the water column around this major biotic turnover. Whilst the extinctions of M. spinulosa and A. praetopilensis occur during a long-term cooling trend, the biotic turnover in the muricate group does not appear to be related to significant climatic change. Sea surface temperatures decrease slowly prior to the extinction events, and there is no evidence for a large-temperature shift associated with the faunal changes. The turnover event was therefore probably related to the increased surface water productivity and the deterioration of photosymbiotic partnerships with algae.
Resumo:
Visual observations of manganese deposits on the Blake plateau from a manned submersible indicate that the occurrence of manganese as nodules, slabs, or pavement may be related to localized environmental conditions. Manganese is concentrated at the crests of sand waves and, in areas of gentle slope, grades locally from nodules to solid pavement.
Resumo:
Twenty-two trace elements in 355 sediment samples from Site 997 on the Blake Ridge were examined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry, for respective fractions of acid-soluble and insoluble compositions. Downhole profiles of these elements exhibit complicated fluctuations throughout late Miocene to Pleistocene, principally due to the variations in the acid-soluble fraction. Noncarbonate composition is given from the acid-insoluble residues, which permits us to recognize secular feature of selected element variance for four intervals. These intervals (I: 0-183 mbsf; II: 183- 440 mbsf; III: 440-618 mbsf; and IV: 618-750 mbsf) are interpreted to have originated from changes in the suite of sediments of particular sources and chemical composition, sedimentation rate, dilution of biogenic carbonate abundance, and possibly the current system that controlled deposition and reworking of the terrigenous materials.