40 resultados para Blackburn, Josh

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition from magmatic crystallization to high-temperature metamorphism in deep magma chambers (or lenses) beneath spreading ridges has not been fully described. High-temperature microscopic veins found in olivine gabbros, recovered from Ocean Drilling Program Hole 735B on the Southwest Indian Ridge during Leg 176, yield information on the magmatic-hydrothermal transition beneath spreading ridges. The microscopic veins are composed of high-temperature minerals, (i.e., clinopyroxene, orthopyroxene, brown amphibole, and plagioclase). An important feature of these veins is the 'along-vein variation' in mineralogy, which is correlated with the magmatic minerals that they penetrate. Within grains of magmatic plagioclase, the veins are composed of less calcic plagioclase. In grains of olivine, the veins are composed of orthopyroxene + brown amphibole + plagioclase. In clinopyroxene grains, the veins consist of plagioclase + brown amphibole and are accompanied by an intergrowth of brown amphibole + orthopyroxene. The mode of occurrence of the veins cannot be explained if these veins were crystallized from silicate melts. Consequently, these veins and nearby intergrowths were most likely formed by the reaction of magmatic minerals with fluid phases under the conditions of low fluid/rock ratios. Very similar intergrowths of brown amphibole + orthopyroxene are observed in clinopyroxene grains with 'interfingering' textures. It is believed, in general, that the penetration of seawater does not predate the ductile deformation within Layer 3 gabbros of the slow-spreading ridges. If this is the case, the fluid responsible for the veins did not originate from seawater because the formation of the veins and the interfingering textures preceded ductile deformation and, perhaps, complete solidification of the gabbroic crystal mush. It has been proposed, based on fluid inclusion data, that the exsolution of fluid from the latest-stage magma took place at temperatures >700°C in the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (MARK) area. No obvious mineralogical evidence, however, has been found for these magmatic fluids. The calculated temperatures for the veins and nearby intergrowths found in Hole 735B gabbros are up to 1000°C, and these veins are the most plausible candidate for the mineralogical expression of the migrating magmatic fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collective impact of humans on biodiversity rivals mass extinction events defining Earth's history, but does our large population also present opportunities to document and contend with this crisis? We provide the first quantitative review of biodiversity-related citizen science to determine whether data collected by these projects can be, and are currently being, effectively used in biodiversity research. We find strong evidence of the potential of citizen science: within projects we sampled (n = 388), ~1.3 million volunteers participate, contributing up to US Dollar 2.5 billion in-kind annually. These projects exceed most federally-funded studies in spatial and temporal extent, and collectively they sample a breadth of taxonomic diversity. However, only 12% of the 388 projects surveyed obviously provide data to peer-reviewed scientific articles, despite the fact that a third of these projects have verifiable, standardized data that are accessible online. Factors influencing publication included project spatial scale and longevity and having publically available data, as well as one measure of scientific rigor (taxonomic identification training). Because of the low rate at which citizen science data reach publication, the large and growing citizen science movement is likely only realizing a small portion of its potential impact on the scientific research community. Strengthening connections between professional and non-professional participants in the scientific process will enable this large data resource to be better harnessed to understand and address global change impacts on biodiversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea surface temperatures (SSTs) derived from the alkenone UK'37) record of Quaternary sediments may be subject to bias if algae with different temperature sensitivities have contributed to the sedimentary alkenone record. The alkenone-derived SST records are usually based on a UK'37-temperature relationship which was measured in culture experiments using the coccolithophorid Emiliania huxleyi (F.G. Prahl, L.A. Muehlhausen and D.L. Zahnle, 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303-2310). To assess possible effects of past species changes on the UK'37-temperature signal, we have analyzed long-chain alkenones and coccolithophorids in a late Quaternary sediment core from the Walvis Ridge and compared the results to SST estimates extracted from the d18O record of the planktonic foraminifer Globigerinoides ruber. Alkenones and isotopes were determined over the entire 400-kyr core record while the coccolithophorid study was confined to the last 200 kyr when the most pronounced changes in alkenone content occurred. Throughout oxygen-isotope stages 6 and 5, species of the genus Gephyrocapsa were the predominating coccolithophorids. E. huxleyi began to increase systematically in relative abundance since the stage 5/4 transition, became dominant over Gephyrocapsa spp. during stage 3 and reached the highest abundances in the Holocene. Carbon-normalized alkenone concentrations are inversely related to the relative abundances of E. huxleyi, and directly related to that of Gephyrocapsa spp., suggesting that species of this genus were the principal alkenone contributors to the sediments. Nevertheless, SST values obtained from the UK'37-temperature relationship for E. huxleyi compare favourably to the isotope-derived temperatures. The recently reported UK'37-temperature relationship for a single strain of Gephyrocapsa oceanica (J.K. Volkman. S.M. Barrett, S.I. Blackburn and E.L. Sikes, 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochim. Cosmochim. Acta 59, 513-520) produces unrealistically high SST values indicating that the temperature response of the examined strain is not typical for the genus Gephyrocapsa. This is supported by the C37:C38, alkenone ratios of the sediments which are comparable to average ratios reported for E. huxleyi, but significantly higher than for the G. oceanica strain. Most notably, the general accordance of the alkenone characteristics between sediments and E. huxleyi persists through stages 8 to 5 and even in times that predate the first appearance of this species (268 ka; H.R. Thierstein, K.R. Geitzenauer and B. Molfino, 1977. Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology 5, 400-404). Our results suggest that UK'37-temperature relationships based on E. huxleyi produce reasonable paleo-SST estimates even for late Quaternary periods when this species was scarce or absent because other alkenone-synthesizing algae, e.g. of the genus Gephyrocapsa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total sediment oxygen consumption rates (TSOC or Jtot), measured during sediment-water incubations, and sediment oxygen microdistributions were studied at 16 stations in the Arctic Ocean (Svalbard area). The oxygen consumption rates ranged between 1.85 and 11.2 mmol m**-2 d**-1, and oxygen penetrated from 5.0 to >59 mm into the investigated sediments. Measured TSOC exceeded the calculated diffusive oxygen fluxes (Jdiff) by 1.1-4.8 times. Diffusive fluxes across the sediment-water interface were calculated using the whole measured microprofiles, rather than the linear oxygen gradient in the top sediment layer. The lack of a significant correlation between found abundances of bioirrigating meiofauna and high Jtot/Jdiff ratios as well as minor discrepancies in measured TSOC between replicate sediment cores, suggest molecular diffusion, not bioirrigation, to be the most important transport mechanism for oxygen across the sediment-water interface and within these sediments. The high ratios of Jtot/Jdiff obtained for some stations were therefore suggested to be caused by topographic factors, i.e. underestimation of the actual sediment surface area when one-dimensional diffusive fluxes were calculated, or sampling artifacts during core recovery from great water depths. Measured TSOC correlated to water depth raised to the -0.4 to -0.5 power (TSOC = water depth**-0.4 to -0.5) for all investigated stations, but they could be divided into two groups representing different geographical areas with different sediment oxygen consumption characteristics. The differences in TSOC between the two areas were suggested to reflect hydrographic factors (such as ice coverage and import/production of reactive particulate organic material) related to the dominating water mass (Atlantic or polar) in each of the two areas. The good correlation between TSOC and water depth**-0.4 to -0.5 rules out any of the stations investigated to be topographic depressions with pronounced enhanced sediment oxygen consumption.