26 resultados para Bit error rate

em Publishing Network for Geoscientific


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The TEX86H temperature proxy is a relatively new proxy based on crenarchaeotal lipids and has rarely been applied together with other temperature proxies. In this study, we applied the TEX86H on a sediment core from the Alboran Sea (western Mediterranean, core ODP-977A) covering the penultimate climate cycle, that is, from 244 to 130 ka, and compared this with previously published sea surface temperatures derived from the Uk'37 of alkenones of haptophyta and Mg/Ca records of planktonic foraminifera. The TEX86H temperature record shows remarkably similar stadial-interstadial patterns and abrupt temperature changes to those observed with the Uk'37 palaeothermometer. Absolute TEX86H temperature estimates are generally higher than those of Uk'37, though this difference (<3°C in 81% of the data points) is mainly within the temperature calibration error for both proxies, suggesting that crenarchaeota and haptophyta experienced similar temperature variations. During occasional events (<5% of the analyzed time span), however, the TEX86H exhibits considerably higher absolute temperature estimates than the Uk'37. Comparison with Mg/Ca records of planktonic foraminifera as well as other Mediterranean TEX86 and Uk'37 records suggests that part of this divergence may be attributed to seasonal differences, that is, with TEX86H reflecting mainly the warm summer season while Uk'37 would show annual mean. Biases in the global calibration of both proxies or specific biases in the Mediterranean are an alternative, though less likely, explanation. Despite differences between absolute TEX86H and Uk'37 temperatures, the correlation between the two proxies (r**2 = 0.59, 95% significance) provides support for the occurrence of abrupt temperature variations in the western Mediterranean during the penultimate interglacial-to-glacial cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (rated age models indicating extremely rapid release of isotopically light carbon, possibly from seafloor methane hydrate, as the proximal cause of the event. However, the 3He[ET] technique indicates a previously unrecognized and extreme increase in sedimentation rate coincident with the return of climate proxies to pre-event values. The 3He[ET]-based age model thus suggests a far more rapid recovery from the climatic perturbation than previously proposed or predicted on the basis of the modern carbon cycle, and so may indicate additional or accelerated mechanisms of carbon removal from the ocean-atmosphere system during this period. 3He[ET] was also measured at ODP Site 1051 to test the validity of the Site 690 chronology. Comparison of these data sets seems to require removal of several tens of kyr of sediment within the climatic excursion at Site 1051, an observation consistent with sediment structures and previous age modeling efforts. The Site 1051 age model shows a ~30 kyr period in which climate proxies return toward pre-event values, after which they remain invariant for ~80 kyr. If this rise represents the recovery interval identified at Site 690, then the 3HeET-based age models of the two sites are in good agreement. However, alternative interpretations are possible, and work on less disrupted sites is required to evaluate the reliability of the proposed new chronology of the climate excursion. Regardless of these details, this work shows that the 3HeET technique can provide useful independent evidence for the development and testing of astronomically calibrated age models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most current methods of reconstructing past sea levels within Antarctica rely on radiocarbon dating. However, radiocarbon dating is limited by the availability of material for dating and problems inherent with radiocarbon reservoirs in Antarctic marine systems. Here we report on the success of a new approach to dating raised beach deposits in Antarctica for the purpose of reconstructing past sea levels. This new approach is the use of optically stimulated luminescence (OSL) on quartz-grains obtained from the underside of cobbles within raised beaches and boulder pavements. We obtained eight OSL dates from three sites along the shores of Maxwell Bay in the South Shetland Islands of the Antarctic Peninsula. These dates are internally consistent and fit well with previously published radiocarbon ages obtained from the same deposits. In addition, when the technique was applied to a modern beach, it resulted in an age of zero. Our results suggest that this method will provide a valuable tool in the reconstruction of past sea levels in Antarctica and other coarse-grained beach deposits across the globe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000 µatm CO2 and a temperature rise of 1.5-3.0 °C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study tested the hypothesis that the response of corals to temperature and pCO2 is consistent between taxa. Juvenile massive Porites spp. and branches of P. rus from the back reef of Moorea were incubated for 1 month under combinations of temperature (29.3 °C and 25.6 °C) and pCO2 (41.6 Pa and 81.5 Pa) at an irradiance of 599 µmol quanta/m/s. Using microcosms and CO2 gas mixing technology, treatments were created in a partly nested design (tanks) with two between-plot factors (temperature and pCO2), and one within-plot factor (taxon); calcification was used as a dependent variable. pCO2 and temperature independently affected calcification, but the response differed between taxa. Massive Porites spp. was largely unaffected by the treatments, but P. rus grew 50% faster at 29.3 °C compared with 25.6 °C, and 28% slower at 81.5 Pa vs. 41.6 Pa CO2. A compilation of studies placed the present results in a broader context and tested the hypothesis that calcification for individual coral genera is independent of pH, [HCO3]-, and [CO3]2-. Unlike recent reviews, this analysis was restricted to studies reporting calcification in units that could be converted to nmol CaCO3/cm**2/h. The compilation revealed a high degree of variation in calcification as a function of pH, [HCO3]-, and [CO3]2-, and supported three conclusions: (1) studies of the effects of ocean acidification on corals need to pay closer attention to reducing variance in experimental outcomes to achieve stronger synthetic capacity, (2) coral genera respond in dissimilar ways to pH, [HCO3]-, and [CO3]2-, and (3) calcification of massive Porites spp. is relatively resistant to short exposures of increased pCO2, similar to that expected within 100 y.