230 resultados para Biochar, pirolisi, Py-GC-MS
em Publishing Network for Geoscientific
Resumo:
The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO4[2-]-CH4 transition where H2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe2+ diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO4[2-] and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO4[2-]-CH4 and H2S-Fe2+ cause the trapping of isotopically heavy iron sulfide with delta34S = +15 to +33 per mil at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO4[2-] diffusing downward into the SO4[2-]-CH4 transition has an isotopic composition of +19 per mil, close to the +23 per mil of H2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO4[2-] (+43 per mil) and H2S (-15 per mil) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth's history.
Resumo:
We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.
Resumo:
The reduction in sea ice along the SE Greenland coast during the last century has severely impacted ice-rafting to this area. In order to reconstruct ice-rafting and oceanographic conditions in the area of Denmark Strait during the last ~150 years, we conducted a multiproxy study on three short (20 cm) sediment cores from outer Kangerdlugssuaq Trough (~300 m water depth). The proxy-based data obtained have been compared with historical and instrumental data to gain a better understanding of the ice sheet-ocean interactions in the area. A robust chronology has been developed based on 210Pb and 137Cs measurements on core PO175GKC#9 (~66.2°N, 32°W) and expanded to the two adjacent cores based on correlations between calcite weight percent records. Our proxy records include sea-ice and phytoplankton biomarkers, and a variety of mineralogical determinations based on the <2 mm sediment fraction, including identification with quantitative x-ray diffraction, ice-rafted debris counts on the 63-150 µm sand fraction, and source identifications based on the composition of Fe oxides in the 45-250 µm fraction. A multivariate statistical analysis indicated significant correlations between our proxy records and historical data, especially with the mean annual temperature data from Stykkishólmur (Iceland) and the storis index (historical observations of sea-ice export via the East Greenland Current). In particular, the biological proxies (calcite weight percent, IP25, and total organic carbon %) showed significant linkage with the storis index. Our records show two distinct intervals in the recent history of the SE Greenland coast. The first of these (ad 1850-1910) shows predominantly perennial sea-ice conditions in the area, while the second (ad 1910-1990) shows more seasonally open water conditions.
Resumo:
It is largely unknown if and how persistent organic pollutants (POPs) affect the transfer of maternal hormones to eggs. This occurs despite an increasing number of studies relating environmental conditions experienced by female birds at the time of egg formation to maternal hormonal effects. Here we report the concentrations of maternal testosterone, 17beta-estradiol and major classes of POPs (organochlorines, brominated flame retardants and metabolically-derived products) in the yolk of unincubated, third-laid eggs of the glaucous gull (Larus hyperboreus), a top-predator in the Arctic marine environment. Controlled for seasonal and local variation, positive correlations were found between the concentrations of certain POPs and testosterone. Contaminant-related changes in the relative concentrations of testosterone and 17beta-estradiol were also observed. In addition, yolk steroid concentrations were associated with contaminant profiles describing the proportions of different POPs present in the yolk. Eggs from nests in which two sibling eggs hatched or failed to hatch differed in POP profiles and in the relative concentrations of testosterone and 17beta-estradiol. Although the results of this correlative study need to be interpreted with caution, they suggest that contaminant-related changes in yolk steroids may occur, possibly affecting offspring performance over and above toxic effects brought about by POPs in eggs.
Resumo:
Behavioural field observations are increasingly being used in ecotoxicological research to identify potential adverse effects of exposure to persistent organic pollutants (POPs). We investigated thermal conditions inside the nest and parental behaviour of glaucous gulls, Larus hyperboreus, breeding in the Norwegian Arctic in relation to the concentrations of major classes of POPs (organochlorines, brominated flame retardants and metabolically derived products) accumulated in their blood. Most notably, nest temperature was negatively correlated with the concentrations of the sum of DDT, sum of PCB and several quantitatively minor POP classes within the incubating parent. To investigate the relationship between incubation ability and parental POP exposure further, we experimentally increased the costs of incubation by artificially increasing the clutch size from two to four eggs. Clutch enlargement was followed by a decrease in nest temperature, but this drop in temperature was not associated with POP concentrations within the incubating parent. However, males, which had higher POP concentrations and lower white blood cell counts than females, seemed less able to maintain nest temperature. There was virtually no evidence to suggest that the sum of PCB or DDT were associated with changes in the time a bird spent incubating. However, there was some indication that nest site attendance by nonincubating males was negatively related to the sum of DDT, suggesting that nest protection may have been compromised. The results suggest that adverse effects of parental POP exposure may occur through suboptimal thermal conditions for embryo development and possibly increased egg predation risk.
Resumo:
Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.
Resumo:
Two deep-sea sediment cores from the northeastern and the southeastern Arabian Sea were studied in order to reconstruct the palaeoenvironments of the past glacial cycles. Core 136KL was recovered from the high-productivity area off Pakistan within the modern oxygen-minimum zone (OMZ). By contrast, modern primary productivity at the site of MD900963 close to Maldives is moderate and bottom waters are today well oxygenated. For both cores, we reconstructed the changes in palaeoproductivity using a set of biomarkers (alkenones, dinosterol and brassicasterol); the main result is that primary productivity is enhanced during glacial stages and lowered during interstadials. The proxies associated with productivity show a 23 kyr cyclicity corresponding to the precession-related insolation cycle. Palaeoredox conditions were studied in both cores using a new organic geochemical parameter (C35/C31-n-alkane ratio) developed by analysing surface sediments from a transect across the OMZ off Pakistan. The value of this ratio in core 136KL shows many variations during the last 65 kyr, indicating that the OMZ was not stable during this time: it disappeared completely during Heinrich- and the Younger Dryas events, pointing to a connection between global oceanic circulation and the stability of the OMZ. The C35/C31 ratio determined in sediments of core MD900963 shows that bottom waters remained rather well oxygenated over the last 330 kyr, which is confirmed by comparison with authigenic metal concentrations in the same sediments. A zonally averaged, circulation-biogeochemical ocean model was used to explore how the intermediate Indian Ocean responds to a freshwater flux anomaly at the surface of the North Atlantic. As suggested by the geochemical time series, both the abundance of Southern Ocean Water and the oxygen concentration are significantly increased in response to this freshwater perturbation.