12 resultados para Best interest of the minor

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Messinian was a time of major climatic and paleoceanographic change during the late Cenozoic. It is well known around the Mediterranean region because of the giant anhydritelgypsum sequence and the suggested desiccation of the Mediterranean Sea. However, this interval is less constrained outside the Mediterranean region, where several paleoceanographic changes could have taken place because of the desiccation. Hence, we present an integrated stratigraphic framework for future Messinian paleoceanographic studies, determination of the effect of the Mediterranean desiccation on deep-water paleoceanography, and comparison of intra-Mediterranean paleoceanographic changes with those in the open oceans during the Messinian Stage. Four DSDP/ODP Holes (552A, 646B, 608, and 547A) from the North Atlantic Ocean and one land borehole from Morocco have been studied to integrate bio-, magneto-, and stable isotope Messinian stratigraphy with high resolution sampling. Our results produce the best assessment of the Tortonian/Messinian boundaries in all holes because they do not rely on any one signal. In paleomagnetic Subchronozone C3An1r in the Sale borehole and DSDP Site 609, a S/D coiling direction change of Neogloboquadrina pachyderma/acostaensis appears to indicate PMOW entering the northeastern Atlantic Ocean, at least reaching 50°N. Diachrony and synchrony of some important Messinian planktic foraminifera from these Atlantic DSDP/ODP holes and the Sale borehole, such as the LO of Gq. dehiscens, the LO of Gt. Eenguaensis, the FO and LO of Ct. conomiozea, the FO of Gt. margaritae s.s., the FO of Gt. puncticutata, and the FO of Gt. crassaformis are discussed for understanding some of the paleoceanographic changes. This integrated stratigraphic framework presented here allows much better North Atlantic correlations at this critical point in Messinian geologic history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magellania venosa, the largest recent brachiopod, occurs in clusters and banks in population densities of up to 416 ind/m**2 in Comau Fjord, Northern Chilean fjord region. Below 15 m, it co-occurs with the mytilid Aulacomya atra and it dominates the benthic community below 20 m. To determine the question of why M. venosa is a successful competitor, the in situ growth rate of the brachiopod was studied and its overall growth performance compared with that of other brachiopods and mussels. The growth in length was measured between February 2011 and March 2012 after mechanical tagging and calcein staining. Settlement and juvenile growth were determined from recruitment tiles installed in 2009 and from subsequent photocensus. Growth of M. venosa is best described by the general von Bertalanffy growth function, with a maximum shell length (Linf) of 71.53 mm and a Brody growth constant (K) of 0.336/year. The overall growth performance (OGP index = 5.1) is the highest recorded for a rynchonelliform brachiopod and in the range of that for Mytilus chilensis (4.8-5.27), but lower than that of A. atra (5.74). The maximal individual production (PInd) is 0.29 g AFDM/ind/year at 42 mm shell length and annual production ranges from 1.28 to 89.25 g AFDM/year/m**2 (1-57% of that of A. atra in the respective fjords). The high shell growth rate of M. venosa, together with its high overall growth performance may explain the locally high population density of this brachiopod in Comau Fjord. However, the production per biomass of the population (P/B-ratio) is low (0.535) and M. venosa may play only a minor role in the food chain. Settling dynamics indicates that M. venosa is a pioneer species with low juvenile mortality. The coexistence of the brachiopod and bivalve suggests that brachiopod survival is affected by neither the presence of potential brachiopod predators nor that of space competitors (i.e. mytilids).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 × CBT (r**2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT'): MAT = 0.81-5.67 × CBT + 31.0 × MBT' (r**2 = 0.59; RMSE = 5.0 °C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r**2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20 °C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution. The applicability of the new MBT'-CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical and mineralogical composition of pelagic sediments from the East Pacific Ocean has been determined with the aim of defining the ultimate sources and the mechanisms of formation of the solid phases. The distribution of elements between sea-water, the pore solution and the various solid components of the sediments permits interpretations of the variations in time and space of the gross chemical composition of pelagic clays. For example, manganese, present in sea-water in a divalent form, is apparently oxidized at the sediment-water interface to tetravalent species which subsequently become a part of the group of ferromanganese oxide minerals which are found in the marine environment. It is suggested the rate of manganese accumulation in sediments is some function of the length of time the sediment surface is in contact with sea-water. The contribution of chemical species from the different geospheres is considered. The quantitative importance of pelagic clays in the major sedimentary cycle is studied on the basis of the distribution of the weathered igneous rock products between continental and pelagic deposits and sea-water. These analyses of a wide variety of pelagic clays allow a reformulation of the geochemical balance and it is concluded that pelagic clays account for approximately 13 per cent of the total mass of sediments produced over geologic time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pore water chemistry of mud volcanoes from the Olimpi Mud Volcano Field and the Anaximander Mountains in the eastern Mediterranean Sea have been studied for three major purposes: (1) modes and velocities of fluid transport were derived to assess the role of (upward) advection, and bioirrigation for benthic fluxes. (2) Differences in the fluid chemistry at sites of Milano mud volcano (Olimpi area) were compiled in a map to illustrate the spatial heterogeneity reflecting differences in fluid origin and transport in discrete conduits in near proximity. (3) Formation water temperatures of seeping fluids were calculated from theoretical geothermometers to predict the depth of fluid origin and geochemical reactions in the deeper subsurface. No indications for downward advection as required for convection cells have been found. Instead, measured pore water profiles have been simulated successfully by accounting for upward advection and bioirrigation. Advective flow velocities are found to be generally moderate (3-50 cm/y) compared to other cold seep areas. Depth-integrated rates of bioirrigation are 1-2 orders of magnitude higher than advective flow velocities documenting the importance of bioirrigation for flux considerations in surface sediments. Calculated formation water temperatures from the Anaximander Mountains are in the range of 80 to 145 °C suggesting a fluid origin from a depth zone associated with the seismic decollement. It is proposed that at that depth clay mineral dehydration leads to the formation and advection of fluids reduced in salinity relative to sea water. This explains the ubiquitous pore water freshening observed in surface sediments of the Anaximander Mountain area. Multiple fluid sources and formation water temperatures of 55 to 80 °C were derived for expelled fluids of the Olimpi area.