14 resultados para Belts and belting
em Publishing Network for Geoscientific
Resumo:
Knowledge of the evolution of atmospheric carbon dioxide concentrations throughout the Earth's history is important for a reconstruction of the links between climate and radiative forcing of the Earth's surface temperatures. Although atmospheric carbon dioxide concentrations in the early Cenozoic era (about 60 Myr ago) are widely believed to have been higher than at present, there is disagreement regarding the exact carbon dioxide levels, the timing of the decline and the mechanisms that are most important for the control of CO2 concentrations over geological timescales. Here we use the boron-isotope ratios of ancient planktonic foraminifer shells to estimate the pH of surface-layer sea water throughout the past 60 million years, which can be used to reconstruct atmospheric CO2 concentrations. We estimate CO2 concentrations of more than 2,000 p.p.m. for the late Palaeocene and earliest Eocene periods (from about 60 to 52 Myr ago), and find an erratic decline between 55 and 40 Myr ago that may have been caused by reduced CO2 outgassing from ocean ridges, volcanoes and metamorphic belts and increased carbon burial. Since the early Miocene (about 24 Myr ago), atmospheric CO2 concentrations appear to have remained below 500 p.p.m. and were more stable than before, although transient intervals of CO2 reduction may have occurred during periods of rapid cooling approximately 15 and 3 Myr ago.
Resumo:
Four dominant depositions of carbonaceous claystones are recognized to have occurred during the early Aptian to middle Albian at Site 534. There are correlations of stable isotope ratios with organic carbon content and of clay content with clay mineralogy of the samples. Almost all organic carbon in these sequences has very negative terrestrial isotope ratios, and the clay of that age indicates predominance of aluminous montmorillonite, which is thought to be of terrigenous origin. It is suggested that development of coastal vegetation belts and deltaic outbuilding with consequent outpouring of land-plant detritus and terrigenous elastics into the deep basins probably led to formation of the "black shale" facies.
Resumo:
Planktonic foraminiferal and nannoplankton stratigraphy of the Pliocene-Quatemary Sediments of the northern half of the Atlantic Ocean from the equator up to the Rockall Plateau and the Norwegian Sea, is considered. Lowlatitude zonations were used for the subdivision of the Pliocene and Quaternary Sediments of different climatic belts, and certain subglobal zonal units were recognized. Variations in the degree of resolution of the zonation in different latitudes were revealed; the resolution of zonal scales based on calcareous plankton diminishes northwards. Changes of taxonomic composition of the zonal foraminifer and nannoplankton assemblages within various latitudinal belts of the Atlantic were analyzed taking into consideration the influence of climatic factors and of local bionomic conditions. Correlation with the magnetostratigraphic time-scale permitted the establishment of the most reliable appearance and disappearance datums (datum planes) of planktonic foraminifer and nannoplankton species. Paleontologic plates demonstrate some guide forms of two groups of calcareous plankton, and a short description of the taxa is given in the text. Major stratigraphic problems of Pliocene and Quaternary marine deposits are discussed. The monograph can be used in different geological investigations by specialists in geology, paleontology, and oceanology.
Resumo:
The improved understanding of the pollen signal in the marine sediments offshore of northwest Africa is applied to deep-sea core M 16017-2 at 21°N. Downcore fluctuations in the percentage, concentration and influx diagrams record latitudinal shifts of the main northwest African vegetation zones and characteristics of the trade winds and the African Easterly Jet. Time control is provided by 14C ages and 180 records. During the period 19,000-14,000 yr B.P. a compressed savanna belt extended between about 12 ° and 14-15°N. The Sahara had maximally expanded northward and southward under hyperarid climatic conditions. The belt with trade winds and dominant African Easterly Jet transport had not shifted latitudinally. The trade winds were strong as compared to the modern situation but around 13,000 yr B.P. the trade winds weakened. After 14,000 yr B.P. the climate became less arid south of the Sahara and a first spike of fluvial runoff is registered around 13,000 yr B.P. Fluvial runoff increased strongly around 11,000 yr B.P. and maximum runoff is recorded from about 9000-7800 yr B.P. Around 12,500 yr B.P. the savanna belt started to shift northward and became richer in woody species: it shifted about 6° of latitude, reached its northernmost position during the period of 9200-7800 yr B.P. and extended between about 16° and 24°N at that time. Tropical forest had reached its maximum expansion and the Guinea zone reached as far north as about 15°N, reflecting very humid climatic conditions south of the Sahara. North of the Sahara the climate also became more humid and Mediterranean vegetation developed rapidly. The Sahara had maximally contracted and the trade winds were weak and comparable with the present day intensity. After about 7800 yr B.P. the southern fringe of the Sahara and accordingly the savanna belt, shifted rapidly southward again.
Resumo:
The early Eocene epoch was characterized by extreme global warmth, which in terrestrial settings was characterized by an expansion of near-tropical vegetation belts into the high latitudes. During the middle to late Eocene, global cooling caused the retreat of tropical vegetation to lower latitudes. In high-latitude settings, near-tropical vegetation was replaced by temperate floras. This floral change has recently been traced as far south as Antarctica, where along the Wilkes Land margin paratropical forests thrived during the early Eocene and temperate Nothofagus forests developed during the middle Eocene. Here we provide both qualitative and quantitative palynological data for this floral turnover based on a sporomorph record recovered at Integrated Ocean Drilling Program (IODP) Site U1356 off the Wilkes Land margin. Following the nearest living relative concept and based on a comparison with modern vegetation types, we examine the structure and diversity patterns of the Eocene vegetation along the Wilkes Land margin. Our results indicate that the early Eocene forests along the Wilkes Land margin were characterized by a diverse canopy composed of plants that today occur in tropical settings; their richness pattern was similar to that of present-day forests from New Caledonia. The middle Eocene forests were characterized by a canopy dominated by Nothofagus and exhibited richness patterns similar to modern Nothofagus forests from New Zealand.
Resumo:
During Leg 177 of the Ocean Drilling Program (ODP), well-preserved Middle Miocene to Pleistocene carbonate-rich sediment records were recovered on a north-south transect through the south-eastern Atlantic sector of the Southern Ocean at Site 1088 on the Agulhas Ridge and Site 1092 on Meteor Rise. Both sites were dominated by the deposition of calcareous nannofossil oozes through the Miocene, indicating low biological productivity in warm to temperate surface waters. A continuous increase in the proportions of foraminifera since the latest Miocene (6.5 Ma) points to enhanced nutrient supply, possibly related to the global 'biogenic bloom' event across the Miocene-Pliocene boundary. Since the Late Pliocene, different styles of biological productivity developed between the sites. Enhanced deposition of biosiliceous constituents at the southern Site 1092, particularly in the Early Pleistocene, is consistent with the formation of the Circum-Antarctic Opal Belt since 2.5 Ma in a setting near the Polar Front, whereas carbonate deposition still prevailed at the northern Site 1088 situated near the Subtropical Front. Clay-mineral tracers of water-mass advection together with the pattern of sedimentation rates and hiatuses reflect distinct pulses in the development of regional ocean circulation between 14 and 12 Ma, around 8 Ma and since 2.8 Ma. These pulses can be related to Antarctic ice-sheet extension that mediates the production and flow of southern source water, and stepwise increases in North Atlantic Deep Water production that drives global conveyor circulation. At Site 1088, illite chemistry and silt/clay ratios of the terrigenous sediment fraction reflect the history of terrestrial climate in southern Africa, with humid conditions prior to the Early Late Miocene (9.7 Ma), followed by a dry episode until 7.7 Ma. The latest Miocene and Early Pliocene were characterized by a humid episode until modern aridity was established in the Late Pliocene between 4.0 and 2.8 Ma. These climate changes were related to the latitudinal migration of climate belts in response to tectonically caused reorganizations in atmospheric and ocean circulation.
Resumo:
In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.
Resumo:
A petrologic-geochemical study (petrochemistry, contents of siderophile and certain lithophile elements, composition of rock-forming silicates and accessory chrome spinels) of ultrabasic rocks dredged from the arc side in the northern end of the Tonga deep-sea trench has been carried out. The ultrabasites included harzburgites and dunites. Peridotites show clearly manifested material characteristics of ultrabasic relicts strongly depleted in low-temperature basaltic components. It is suggested that they have arose in the high degree of partial melting (about 30%) of a matrix mantle source of the lherzolite type. Great similarity of the rocks studied with ultrabasites of many ophiolites that are widespread in folded belts indicates that young island arcs are among the most likely geodynamic environments of ophiolite generation.
Resumo:
Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.
Resumo:
The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.
Resumo:
Reconstruction of the geologic history of the Yenisey Ridge, which developed as an accretionary collision orogen on the western margin of the Siberian craton is essential to understanding the evolution of mobile belts surrounding older cratons, as well as to resolving the recently much debated problem of whether Siberia was part of the supercontinent Rodinia. Available paleotectonic models suggest that this supercontinent was assembled at the Middle-Late Riphean boundary (1100-900 Ma) as a result of the Grenville orogeny, the first long-lived mountain building event which occurred in geosynclinal areas during the Neogaea. However, the character of crustal evolution at that stage is still speculative due to the lack of reliable and conclusive isotope data. In many current geodynamic models, a common underlying assumption is that the Yenisey Ridge showed very little endogenic activity for 1 Gyr, from the time of Tarak granite emplacement (1900-1840 Ma) to the Middle Neoproterozoic (~750 Ma). On the basis of this assumption, several recent studies suggested the absence of Grenvillian collisional events within the Yenisey Ridge. The results of the SHRIMP II U-Pb analysis of rift-related plagiogranites of the Nemtikha Complex, Yenisey Ridge (1380-1360 Ma) suggest an increase in magmatic activity in the Mesoproterozoic. Interpretation of these results in terms of a supercontinent cycle may help find evidence for possible occurrence of the Grenville orogeny on the western margin of the Siberian craton. With this in mind, we attempted to reconstruct using recent geochronological constraints the evolution of metapelitic rocks from the Teya polymetamorphic complex (TPMC), which is a good example of superimposed zoning of low and medium-pressure facies series. High precision age determinations from rock complexes formed in different geodynamic settings under different thermodynamic conditions and geothermal gradients were used to distinguish several major metamorphic events and unravel their time relations with tectonic and magmatic activity in the region.
Resumo:
Nine holes were drilled with a submersible hydraulic drill into the slopes and reef flats of the Caubyan and Calituban reefs as well as of Olango Flat. The maximum depth of core penetration was 11 m. 14C ages showed that the Caubyan and Calituban reefs were formed within the last 6,000 years. Corals settled on a pre-existing relief parallel to the island of Bohol, building a framework for other carbonate-producing organisms. The reef flat south of Olango has a different structure. Formation took place during a Pleistocene high sea level, e.g. 125,000 years ago.
Characterization of the defined MDC types and compilation of MDC initiation times (excel-file 19 kB)
Resumo:
Mud accumulates on continental shelves under a variety of environmental conditions and results in a diverse formation of mud depocenters (MDCs). Their three-dimensional architectures have been in the focus of several recent studies. Due to some terminological confusion concerning MDCs, the present study sets out to define eight individual MDC types in terms of surface sediment distribution and internal geometry. Under conditions of substantial sediment supply, prodeltas (distal zones off river deltas; triangular sheets), subaqueous deltas (disconnected from deltas by strong normal-to-shore currents; wedge-like clinoforms), and mud patches (scattered distribution) and mud blankets (widespread covers) are formed. Forced by hydrodynamic conditions, mud belts in the strict sense (detached from source; elongated bodies), and shallow-water contourite drifts (detached from source; growing normal to prevailing current direction; triangular clinoforms) develop. Controlled by local morphology, mud entrapments (in depressions, behind morphological steps) and mud wedges (triangular clinoforms growing in flow direction) are deposited. Shelf mud deposition took place (1) during early outer-shelf drowning (~14 ka), (2) after inner-shelf inundation to maximum flooding (9.5-6.5 ka), and (3) in sub-recent times (<2 ka). Subsequent expansion may be (1) concentric, in cases where the depocenter formed near the fluvial source, (2) uni-directional, extending along advective current transport paths, and (3) progradational, forming clinoforms that grow either parallel or normal to the bottom current direction. Classical mud belts may be initiated around defined nuclei, the remote sites of which are determined by seafloor morphology rather than the location of the source. From a stratigraphic perspective, mud depocenters coincide with sea-level highstand-related, shelf-wide condensed sections. They often show a conformable succession from transgressive to highstand systems tract stages.
Resumo:
Subtropical Gyres are an important constituent of the ocean-atmosphere system due to their capacity to store vast amounts of warm and saline waters. Here we decipher the sensitivity of the (sub)surface North Atlantic Subtropical Gyre with respect to orbital and millennial scale climate variability between ~140 and 70 ka, Marine Isotope Stage (MIS) 5. Using (isotope)geochemical proxy data from surface and thermocline dwelling foraminifers from Blake Ridge off the west coast of North America (ODP Site 1058) we show that the oceanographic development at subsurface (thermocline) level is substantially different from the surface ocean. Most notably, surface temperatures and salinities peak during the penultimate deglaciation (Termination II) and early MIS 5e, implying that subtropical surface ocean heat and salt accumulation might have resulted from a sluggish northward heat transport. In contrast, maximum thermocline temperatures are reached during late MIS 5e when surface temperatures are already declining. We argue that the subsurface warming originated from intensified Ekman downwelling in the Subtropical Gyre due to enhanced wind stress. During MIS 5a-d a tight interplay of the subtropical upper ocean hydrography to high latitude millennial-scale cold events can be observed. At Blake Ridge, the most pronounced of these high latitude cold events are related to surface warming and salt accumulation in the (sub)surface. Similar to Termination II, heat accumulated in the Subtropical Gyre probably due to a reduced Atlantic Meridional Overturning Circulation. Additionally, a southward shift and intensification of the subtropical wind belts lead to a decrease of on-site precipitation and enhanced evaporation, coupled to intensified gyre circulation. Subsequently, the northward advection of these warm and saline water likely contributed to the fast resumption of the overturning circulation at the end of these high latitude cold events.