23 resultados para Bedfordshire Historical Record Society
em Publishing Network for Geoscientific
Resumo:
The active plate margin of South America is characterized by a frequent occurrence of large and devastating subduction earthquakes. Here we focus on marine sedimentary records off Southern Chile that are archiving the regional paleoseismic history over the Holocene and Late Pleistocene. The investigated records - Ocean Drilling Program (ODP) Site 1232 and SONNE core 50SL - are located at ~40°S and ~38°S, within the Perú-Chile trench, and are characterized by frequent interbedded strata of turbiditic and hemipelagic origin. On the basis of the sedimentological characteristics and the association with the active margin of Southern Chile, we assume that the turbidites are mainly seismically triggered, and may be considered as paleo-megaearthquake indicators. However, the long-term changes in turbidite recurrence times appear to be strongly influenced by climate and sea level changes as well. During sea level highstands in the Holocene and Marine Isotope Stage (MIS) 5, recurrence times of turbiditic layers are substantially higher, primarily reflecting a climate-induced reduction of sediment availability and enhanced slope stability. In addition, segmented tectonic uplift changes and related drainage inversions likely influenced the postglacial decrease in turbidite frequencies. Glacial turbidite recurrence times (including MIS 2, MIS 3, cold substages of MIS 5, and MIS 6), on the other hand, are within the same order of magnitude as earthquake recurrence times derived from the historical record and other terrestrial paleoseismic archives of the region. Only during these cold stages sediment availability and slope instability were high enough to enable recording of the complete sequence of large earthquakes in Southern Chile. Our data thus suggest that earthquake recurrence times on the order of 100 to 200 years are a persistent feature at least during the last glacial period.
Resumo:
Four samples, G5, G7, G8, and G10, collected by Dr W. W. Bishop from an exposed section in the bank of the River Annan, at Roberthill Farm, Dumfriesshire (S35, 110794) were submitted for pollen analysis (Table I.). The samples, with the exception of the uppermost, were from thin peat layers that lie in the middle of a series of water- laid sands, silts and clays several feet in thickness and now rather strongly arched. The lowermost sample, G5, was taken from an organic layer about | in. thick overlying fine sand and underlying some 2.5 in. of grey, silty fine sand. A narrow layer of sandy peat immediately above the silty, fine sand yielded sample G7, and G8 was collected from a similar peaty layer separated from G7 by more sandy- silty peat. The uppermost sample, G10, was taken from light grey clay 13 in. above sample G8.
Resumo:
Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.
Resumo:
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.
Resumo:
We integrate upper Eocene-lower Oligocene lithostratigraphic, magnetostratigraphic, biostratigraphic, stable isotopic, benthic foraminiferal faunal, downhole log, and sequence stratigraphic studies from the Alabama St. Stephens Quarry (SSQ) core hole, linking global ice volume, sea level, and temperature changes through the greenhouse to icehouse transition of the Cenozoic. We show that the SSQ succession is dissected by hiatuses associated with sequence boundaries. Three previously reported sequence boundaries are well dated here: North Twistwood Creek-Cocoa (35.4-35.9 Ma), Mint Spring-Red Bluff (33.0 Ma), and Bucatunna-Chickasawhay (the mid-Oligocene fall, ca. 30.2 Ma). In addition, we document three previously undetected or controversial sequences: mid-Pachuta (33.9-35.0 Ma), Shubuta-Bumpnose (lowermost Oligocene, ca. 33.6 Ma), and Byram-Glendon (30.5-31.7 Ma). An ~0.9 per mil d18O increase in the SSQ core hole is correlated to the global earliest Oligocene (Oi1) event using magnetobiostratigraphy; this increase is associated with the Shubuta-Bumpnose contact, an erosional surface, and a biofacies shift in the core hole, providing a first-order correlation between ice growth and a sequence boundary that indicates a sea-level fall. The d18O increase is associated with a eustatic fall of ~55 m, indicating that ~0.4 per mil of the increase at Oi1 time was due to temperature. Maximum d18O values of Oi1 occur above the sequence boundary, requiring that deposition resumed during the lowest eustatic lowstand. A precursor d18O increase of 0.5 per mil (33.8 Ma, midchron C13r) at SSQ correlates with a 0.5 per mil increase in the deep Pacific Ocean; the lack of evidence for a sea-level change with the precursor suggests that this was primarily a cooling event, not an ice-volume event. Eocene-Oligocene shelf water temperatures of ~17-19 °C at SSQ are similar to modern values for 100 m water depth in this region. Our study establishes the relationships among ice volume, d18O, and sequences: a latest Eocene cooling event was followed by an earliest Oligocene ice volume and cooling event that lowered sea level and formed a sequence boundary during the early stages of eustatic fall.
Resumo:
This collection prepared to IX Congress of INQUA containes 25 articles concerning general and regional problems of Pleistocene. The chronological scale of the Late Pliocene and Pleistocene, climatical cycles and methods of the absolute dating are considered. Some data obtained by means ef paleomagnetic, thermoluminescence and radiocarbon methods at several point sections (Likhvin, Rostov-Jarosiavsky, Priasovje, Ob-garm, Chagan, Pryobskoje Plateau, Lower Volga) are given.
Resumo:
The Helgoland mud area in the German Bight is one of the very few sediment depocenters in the North Sea. Despite the shallowness of the setting (<30 m water depth), its topmost sediments provide a continuous and high-resolution record allowing the reconstruction of regional paleoenvironmental conditions for the time since ~400 a.d. The record reveals a marked shift in sedimentation around 1250 a.d., when average sedimentation rates drop from >13 to ~1.6 mm/year. Among a number of major environmental changes in this region during the Middle Ages, the disintegration of the island of Helgoland appears to be the most likely factor which caused the very high sedimentation rates prior to 1250 a.d. According to historical maps, Helgoland used to be substantially bigger at around 800 a.d. than today. After the shift in sedimentation, a continuous and highly resolved paleoenvironmental record reflects natural events, such as regional storm-flood activity, as well as human impacts at work at local to global scales, on sedimentation in the Helgoland mud area.
Resumo:
The early Cenozoic marine carbon isotopic record is marked by a long-term shift from high d13C values in the late Paleocene to values that are 2 to 3 lower in the early Eocene. The shift is recorded in fossil carbonates from each ocean basin and represents a large change in the distribution of 12C between the ocean and other carbon reservoirs. Superimposed upon this long-term shift are several distinct carbon isotopic negative excursions that are also recorded globally. These carbon isotopic 'events' near the Paleocene-Eocene boundary provide strati-graphic information that can facilitate intersite correlations between marine and non-marine sequences. Here we present a detailed marine carbon isotopic stratigraphy across the Paleocene-Eocene boundary that is constrained by calcareous nannofossil and planktonic foraminifera bio-stratigraphy and magnetostratigraphy. We show that several distinct carbon isotopic changes are recorded in uppermost Paleocene and lowermost Eocene marine biogenic carbonate sediments. At least one of these isotopic changes in the ocean's carbon isotopic composition was transmitted to terrestrial carbon reservoirs, including plant biomass via atmospheric CO2. As a consequence of this exchange of 12C between the ocean and terrestrial carbon reservoirs, it is possible to use carbon isotope stratigraphy to correlate the uppermost Paleocene and lowermost Eocene non-fossiliferous terrestrial sediments of the Paris Basin with marine sequences.
Resumo:
This report gives a comprehensive general description of the scientific activities of Cruise 2 of R. R. S. 'Discovery'. These were largely geological and geophysical and were part of the British contribution to the International Indian Ocean Expedition. In addition to the thirteen geophysicists and geologists on board, there were five scientists involved in ocean chemistry, temperature measurements and ornithology making continuous observations - their accounts are also included. The report of a geological expediton ashore in the Seychelles is given in section 6.