6 resultados para Bayesian spatial analysis, dengue, socioecological factors
em Publishing Network for Geoscientific
Resumo:
Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.
Resumo:
Brownfield rehabilitation is an essential step for sustainable land-use planning and management in the European Union. In brownfield regeneration processes, the legacy contamination plays a significant role, firstly because of the persistent contaminants in soil or groundwater which extends the existing hazards and risks well into the future; and secondly, problems from historical contamination are often more difficult to manage than contamination caused by new activities. Due to the complexity associated with the management of brownfield site rehabilitation, Decision Support Systems (DSSs) have been developed to support problem holders and stakeholders in the decision-making process encompassing all phases of the rehabilitation. This paper presents a comparative study between two DSSs, namely SADA (Spatial Analysis and Decision Assistance) and DESYRE (Decision Support System for the Requalification of Contaminated Sites), with the main objective of showing the benefits of using DSSs to introduce and process data and then to disseminate results to different stakeholders involved in the decision-making process. For this purpose, a former car manufacturing plant located in the Brasov area, Central Romania, contaminated chiefly by heavy metals and total petroleum hydrocarbons, has been selected as a case study to apply the two examined DSSs. Major results presented here concern the analysis of the functionalities of the two DSSs in order to identify similarities, differences and complementarities and, thus, to provide an indication of the most suitable integration options.
Resumo:
Seasonality of biomarker baseline levels were studied in polar cod (Boreogadus saida), caught in Kongsfjorden, Svalbard, in April, July, September and December, 2006-2007. Physiological parameters (condition factor, gonado- and hepato-somatic indexes, energy reserves, potential metabolic activity and antifreeze activity) in polar cod were used to interpret the seasonality of potential biomarkers. The highest levels of ethoxyresorufin-O-deethylase (EROD) activity occurred concomitantly with the highest potential metabolic activity in July due to e.g. intense feeding. During pre-spawning, EROD showed significant inhibition and gender differences. Hence, its potential use in environmental monitoring should imply gender differentiation at least during this period. Glutathione S-transferase and catalase activities were stable from April to September, but changed in December suggesting a link to low biological activity. Knowledge of the biomarker baseline levels and their seasonal trends in polar cod is essential for a trustworthy interpretation of forthcoming toxicity data and environmental monitoring in the Arctic.
Resumo:
This data set provides a detailed inventory of lakes in the Lena Delta, northern Siberia, with respect to the lakes' association with one of the three geomorphological main terraces of the Lena Delta. The inventory is based on Landsat-7 ETM+ image data and spatial analysis in a Geographical Information System (GIS). Several morphometric lake attributes were determined from the resulting dataset and statistically analyzed. Significant differences in the morphometric lake characteristics allowed the distinction of a mean lake type for each main terrace. The lake types reflect the special lithological and cryolithological conditions and geomorphological processes prevailing on each terrace. In Morgenstern et al. (2008), special focus was laid on the investigation of lake orientation and the discussion of possible mechanisms for the evolution of the second terrace's oriented lakes.
Resumo:
Aerial observations of light pollution can fill an important gap between ground based surveys and nighttime satellite data. Terrestrially bound surveys are labor intensive and are generally limited to a small spatial extent, and while existing satellite data cover the whole world, they are limited to coarse resolution. This paper describes the production of a high resolution (1 m) mosaic image of the city of Berlin, Germany at night. The dataset is spatially analyzed to identify themajor sources of light pollution in the city based on urban land use data. An area-independent 'brightness factor' is introduced that allows direct comparison of the light emission from differently sized land use classes, and the percentage area with values above average brightness is calculated for each class. Using this methodology, lighting associated with streets has been found to be the dominant source of zenith directed light pollution (31.6%), although other land use classes have much higher average brightness. These results are compared with other urban light pollution quantification studies. The minimum resolution required for an analysis of this type is found to be near 10 m. Future applications of high resolution datasets such as this one could include: studies of the efficacy of light pollution mitigation measures, improved light pollution simulations, economic and energy use, the relationship between artificial light and ecological parameters (e.g. circadian rhythm, fitness, mate selection, species distributions, migration barriers and seasonal behavior), or the management of nightscapes. To encourage further scientific inquiry, the mosaic data is freely available at Pangaea.
Resumo:
Corel Geological Drafting Kit (CGDK), a program written in VBA, has been designed to assist geologists and geochemists with their drafting work. It obtains geological data from a running Excel application directly, and uses the data to plot geochemical diagrams and to construct stratigraphic columns. The software also contains functions for creating stereographic projections and rose diagrams, which can be used for spatial analysis, on a calibrated geological map. The user-friendly program has been tested to work with CorelDRAW 13 - 14 - 15 and Excel 2003 - 2007.