8 resultados para Baudin

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic geochemical data of Lower Cretaceous shallow water sediments from two sites (865 and 866) drilled during ODP leg 143 are presented. The organic matter is mainly terrestrial at the bottom of the sedimentary column at site 865, whereas algal and/or bacterial organic matter is dominant at site 866. This is the first evidence of shallow water deposition of organic matter during the Early Cretaceous in the Northwestern Pacific. The lower Aptian organic carbon-rich layers from the shallow water sediments of site 866 are geochemically similar to coeval mid-water sediments of site 463.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proto-kerogens were isolated, by extraction and HF/HC1 treatment, from core samples of Holocene sediments of the Cariaco Trench, with interpolated ages of 900, 2850 and 6000 years, and examined via a combination of microscopic, spectroscopic and pyrolytic methods. It appears that these proto-kerogens were chiefly formed from phytoplanktonic components via the degradation-recondensation pathway. The natural sulfurisation pathway only afforded a minor contribution, in spite of the conditions prevailing in the water column and sediments that correspond to those generally considered as especially favourable for the formation of sulfurised organic matter. Proto-kerogen formation via sulfurisation, i.e. the endpoint of the continuum leading to insoluble high molecular weight structures cross-linked by sulfur and resistant to acid hydrolysis, is therefore a rather slow process under these conditions. However, the contribution of sulfurised moieties to the total proto-kerogen substantially increased with depth due to continuous sulfurisation in the time/depth interval, whereas formation through degradation-recondensation is almost complete for the 900 years old sample onwards. Proto-kerogen formation via carbohydrate sulfurisation is faster than lipid sulfurisation and only sulfurised carbohydrates were detected in the shallowest sample. In contrast, sulfurised lipids occur in the other two proto-kerogens. Moreover, their contribution relative to sulfurised carbohydrates increases with depth, probably due to the higher resistance of lipids to mineralisation compared to carbohydrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the geosphere, germanium (Ge) has a chemical behavior close to that of silicon (Si), and Ge commonly substitutes for Si (in small proportions) in silicates. Studying the evolution of the respective proportions of Ge and Si through time allows us to better constrain the global Si cycle. The marine inventory of Ge present as dissolved germanic acid is facing two main sinks known through the study of present sediments: 1) incorporation into diatom frustules and transfer to sediments by these "shuttles", 2) capture of Ge released to pore water through frustule dissolution by authigenic mineral phases forming within reducing sediments. Our goals are to determine whether such a bio-induced transfer of Ge is also achieved by radiolarian and whether Ge could be trapped directly from seawater into authigenic phases with no intervention of opal-secreting organisms (shuttles). To this end, we studied two Paleozoic radiolarite formations and geological formations dated of Devonian, Jurassic and Cretaceous, deposited under more or less drastic redox conditions. Our results show that the Ge/Si values observed for these radiolarites are close to (slightly above) those measured from modern diatoms and sponges. In addition, our results confirm what is observed with some present-day reducing sediments: the ancient sediments that underwent reducing depositional conditions are authigenically enriched in Ge. Furthermore, it is probable that at least a part of the authigenic Ge came directly from seawater. The recurrence and extent (through time and space) of anoxic conditions affecting sea bottoms have been quite important through the geological times; consequently, the capture of Ge by reducing sediments must have impacted Ge distribution and in turn, the evolution of the seawater Ge/Si ratio.