10 resultados para Bass_River_Site

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thick, apparently continuous section recording events of the latest Paleocene thermal maximum in a neritic setting was drilled at Bass River State Forest, New Jersey as part of ODP Leg 174AX [Miller, Sugarman, Browning et al., 1998]. Integrated nannofossil and magneto-stratigraphy provides a firm chronology supplemented by planktonic foraminiferal biostratigraphy. This chronologic study indicates that this neritic section rivals the best deep-sea sections in providing a complete record of late Paleocene climatic events. Carbon and oxygen isotopes measured on benthic foraminifera show a major (4.0% in carbon, 2.3% in oxygen) negative shift correlative with the global latest Paleocene carbon isotope excursion (CIE). A sharp increase in kaolinite content coincides with the isotope shift in the Bass River section, analogous to increases found in several other records. Carbon and oxygen isotopes remain low and kaolinite content remains high for the remainder of the depositional sequence above the CIE (32.5 ft, 9.9 m), which we estimate to represent 300-500 k.y. We interpret these data as indicative of an abrupt shift to a warmer and wetter climate along the North American mid-Atlantic coast, in concert with global events associated with the CIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Paleocene-Eocene Thermal Maximum (PETM, ~5 million years ago) was an interval of global warming and ocean acidification attributed to rapid release and oxidation of buried carbon. We show that the onset of the PETM coincided with a prominent increase in the origination and extinction of calcareous phytoplankton. Yet major perturbation of the surface-water saturation state across the PETM was not detrimental to the survival of most calcareous nannoplankton taxa and did not impart a calcification or ecological bias to the pattern of evolutionary turnover. Instead, the rate of environmental change appears to have driven turnover, preferentially affecting rare taxa living close to their viable limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the New Jersey Coastal Plain, a silty to clayey sedimentary unit (the Marlboro Formation) represents deposition during the Paleocene-Eocene thermal maximum (PETM). This interval is remarkably different from the glauconitic sands and silts of the underlying Paleocene Vincentown and overlying Eocene Manasquan Formation. We integrate new and published stable isotope, biostratigraphic, lithostratigraphic and ecostratigraphic records, constructing a detailed time frame for the PETM along a depth gradient at core sites Clayton, Wilson Lake, Ancora and Bass River (updip to downdip). The onset of the PETM, marked by the base of the carbon isotope excursion (CIE), is within the gradual transition from glauconitic silty sands to silty clay, and represented fully at the updip sites (Wilson Lake and Clayton). The CIE "core" interval is expanded at the updip sites, but truncated. The CIE "core" is complete at the Bass River and Ancora sites, where the early part of the recovery is present (most complete at Ancora). The extent to which the PETM is expressed in the sediments is highly variable between sites, with a significant unconformity at the base of the overlying lower Eocene sediments. Our regional correlation framework provides an improved age model, allowing better understanding of the progression of environmental changes during the PETM. High-resolution benthic foraminiferal data document the change from a sediment-starved shelf setting to a tropical, river-dominated mud-belt system during the PETM, probably due to intensification of the hydrologic cycle. The excellent preservation of foraminifera during the PETM and the lack of severe benthic extinction suggest there was no extreme ocean acidification in shelf settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment records of the stable isotopic composition of N (d15N) show light d15N values at several sites in the proto-North Atlantic during Oceanic Anoxic Event 2 (OAE 2) at the Cenomanian-Turonian transition (~94 Ma). The low d15N during the event is generally attributed to an increase in N2-fixation and incomplete uptake of ammonium for phytoplankton growth. A compilation of all reliable data for the proto North-Atlantic during OAE 2 demonstrates that the most pronounced negative shift in d15N from pre-OAE 2 to OAE 2 occurs in the open ocean, but with d15N never lower than -3 ppm. Using a box model of N cycling for the proto-North Atlantic during OAE 2, we show that N2-fixation is a major contributor to the d15N signal, especially in the open ocean. Incomplete uptake of ammonium for phytoplankton growth is important in regions dominated by downwelling, with lateral transport of ammonium acting as a major source. In the southern proto-North Atlantic, where bottom waters were euxinic, the light d15N signature is largely explained by upwelling of ammonium . Our study provides an overview of regional differences in d15N in the proto-North Atlantic and highlights the role of lateral exchange of water and nutrients, in addition to local biogeochemical processes, in determining d15N values of OAE 2 sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccoliths, calcite plates produced by the marine phytoplankton coccolithophores, have previously shown a large array of carbon and oxygen stable isotope fractionations (termed "vital effects"), correlated to cell size and hypothesized to reflect the varying importance of active carbon acquisition strategies. Culture studies show a reduced range of vital effects between large and small coccolithophores under high CO2, consistent with previous observations of a smaller range of interspecific vital effects in Paleocene coccoliths. We present new fossil data examining coccolithophore vital effects over three key Cenozoic intervals reflecting changing climate and atmospheric partial pressure of CO2 (pCO2). Oxygen and carbon stable isotopes of size-separated coccolith fractions dominated by different species from well preserved Paleocene-Eocene thermal maximum (PETM, ~56 Ma) samples show reduced interspecific differences within the greenhouse boundary conditions of the PETM. Conversely, isotope data from the Plio-Pleistocene transition (PPT; 3.5-2 Ma) and the last glacial maximum (LGM; ~22 ka) show persistent vital effects of ~2 per mil. PPT and LGM data show a clear positive trend between coccolith (cell) size and isotopic enrichment in coccolith carbonate, as seen in laboratory cultures. On geological timescales, the degree of expression of vital effects in coccoliths appears to be insensitive topCO2 changes over the range ~350 ppm (Pliocene) to ~180 ppm (LGM). The modern array of coccolith vital effects arose after the PETM but before the late Pliocene and may reflect the operation of more diverse carbon acquisition strategies in coccolithophores in response to decreasing Cenozoic pCO2.