67 resultados para BONAIRE

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and d18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Delta d18O records are used as a proxy for the oxygen isotopic composition of seawater (d18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual d18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual d18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coastal deposits of Bonaire, Leeward Antilles, are among the most studied archives for extreme-wave events (EWEs) in the Caribbean. Here we present more than 400 electron spin resonance (ESR) and radiocarbon data on coarse-clast deposits from Bonaire's eastern and western coasts. The chronological data are compared to the occurrence and age of fine-grained extreme-wave deposits detected in lagoons and floodplains. Both approaches are aimed at the identification of EWEs, the differentiation between extraordinary storms and tsunamis, improving reconstructions of the coastal evolution, and establishing a geochronological framework for the events. Although the combination of different methods and archives contributes to a better understanding of the interplay of coastal and archive-related processes, insufficient separation, superimposition or burying of coarse-clast deposits and restricted dating accuracy limit the use of both fine-grained and coarse-clast geoarchives to unravel decadal- to centennial-scale events. At several locations, distinct landforms are attributed to different coastal flooding events interpreted to be of tsunamigenic origin. Coastal landforms on the western coast have significantly been influenced by (sub)-recent hurricanes, indicating that formation of the coarse-clast deposits on the eastern coast is likely to be related to past events of higher energy.