12 resultados para BIOLOGICAL SOURCES

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although commonly reported in marine and freshwater environments, little is known about the biological sources of long chain alkyl 1,13- and 1,15-diols, and factors controlling their distributions. Here we analyzed the occurrence and distribution of these lipids in a comprehensive set of marine surface sediments and compare their distributions with environmental conditions like sea surface temperature (SST), salinity and nutrient concentrations. Fractional abundances of the C28 1,13-, C30 1,13- and C30 1,15-diols show a strong correlation with SST and based on these results, we propose the Long chain Diol Index (LDI), which expresses the C30 1,15-diol abundance relative to those of C28 1,13-, C30 1,13- and C30 1,15-diols. The LDI shows a strong linear correlation with SST (LDI = 0.033 × SST + 0.095; R2 = 0.969, n = 162) over a temperature range of -3 to 27 °C. Long chain diol distributions in sediments from the South Atlantic close to the Congo River outflow (West Africa) provided a 43 kyr LDI SST record. This record reflects several known climatic events and shows similarities with an alkenone-derived SST record obtained using the same suite of sediments, both in trend and in terms of absolute SST. This confirms the potential of the LDI as a proxy for palaeo-SST reconstruction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lipid composition of particulate matter in oceanic environments can provide informations on the nature and origin of the organic matter as well as on their transformation processes. Molecular characteristics for lipids in the Arctic environment have been used as indicators of the sources and transformation of organic particulate matter (Smith et al., 1997; Fahl and Stein, 1997, 1999). However, the features of the lipid composition of particulate matter in the Arctic with its high seasonality of ice Cover and primary productivity has been studied insufficiently. Lipids are one of the most important compounds of organic matter. On the one hand, the composition of lipids is a result of the variability of biological sources (phyto- and zooplankton, higher plants, bacteria etc.). On the other hand, the lipid composition of particulate matter is undergone significant alteration during vertical transport. The organic matter balance in the Arctic marginal seas, such as the Kara and Laptev seas, is characterized by the significant supply of dissolved and particulate material by the major Eurasian rivers - Ob, Yenisei and Lena (Cauwet and Sidorov, 1996; Gordeev et al., 1996, Martin et al., 1993). In relation to the world's ocean the primary productivity values are lower in the Arctic seas due to the ice-cover. However local increased values of primary productivity can be connected with the melting processes inducing increased phytoplankton growth near ice-edge (Nelson et al., 1989; Fahl and Stein, 1997) and enhanced river supply of nutrients, These features can influence the proportion of allochtonous and autochtonous components of the organic matter in the Arctic marginal seas (Fahl and Stein, 1997; Stein and Fahl, 1999). Furthermore, increased lipid contents in aquatic environments were found near density discontinuities (Parish et al., 1988). Although being less informative than lipid studies on the molecular level the character of lipid composition analysis on the group could also be used for studying of particulate organic matter and its transformation in sedimentation processes in the Arctic. In this paper the investigation of the characteristics of lipid composition performed by Alexandrova and Shevchenko (1997) in Arctic seas was continued.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solvent-extractable organic fractions of sediment samples from six Ocean Drilling Program Leg 117 sites were investigated by gas chromatography and gas chromatography-mass spectrometry. Sediments deposited in the Indus Fan (Site 720) as well as Miocene sediments from the Owen Ridge (Sites 722 and 731) contain almost exclusively organic matter of terrigenous origin. The organic matter in sediments from the Oman Margin (Sites 723, 725, and 728) and in the Pliocene/Pleistocene sections from the Owen Ridge is mainly of a marine origin with variable admixtures of terrigenous material. In these latter samples strong variations of the lipid composition and distribution are noted. However, the interpretation of the relation to potential biological sources is hampered by a lack of information on the possible lipid composition of appropriate organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface sediments from the Laptev Sea and adjacent continental slope were studied for their composition of particulate organic matter (OM) by means of maceral analysis. The composition of macerals in sediments gives information about the environment, terrigenous supply from the hinterland, and marine OM. With reference to their biological sources, we distinguish between terrigenous and marine macerals. We found that the particulate OM in the surface sediments of the Laptev Sea is predominantly of terrigenous origin (mean: 78%). However, distinct variations exist when looking in detail. In the shelf area, sediments may contain up to 99% terrigenous OM. Freshwater algae occur directly north of the river mouths, reflecting the strong fluvial influence. Relatively high amounts of marine OM (20-40%) are restricted to the upper continental slope, the Vilkitsky Strait and west of the New Siberian Islands, explained by increased surface-water productivity due to increased fluvial nutrient supply, open-water conditions, and phytoplankton blooms at the ice-edge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two main mechanisms are controlling the accumulation of organic matter in the sediments of the Kara Sea. The large rivers Ob and Yenisei supply significant quantities of freshwater onto the shelf (Lisitsyn and Vinogradov, 1995; Bobrovitskaya et al., 1996; Johnson et al., 1997) and deliver terrigenous organie matter and aquatic algae. Additionally, marine organic matter is produced in the water column. In order to distinguish between the different sources of the organic material maceral analysis, organic-geochemical bulk Parameters and biomarkers (short- and long-chain D-alkanes, fatty acids and pigments) were used to determine the quality (marine vs. terrigenous) and quantity of the organic carbon fraction in the surface sediments taken during the 28th cruise of RV Akademik Boris Petrov (Matthiessen and Stepanets, 1998) (Fig. 1). Previous organic-geochemical investigations (i.e., total organic-carbon content (TOC), hydrogen indices (Hl), CIN-ratios) indicate the importance of terrigenous input of organic matter (Galimov et al., 1996; Stein, 1996). Studies of lipid biomarkers in surface sediments in the Ob estuary show also a predominance of terrestrial constituents and an increase in planktonogenic and bacterial lipids further offshore (Belyaeva and Eglinton, 1997). In complex systems such as the Eurasian continental margin characterized by high input of terrestriallaquatic organic matter and strong seasonal variation in sea-ice Cover and primary productivity, the Interpretation of the organic geochemical data is much more complicated and restricted in comparison to similar data Sets from low-latitude open-ocean environments (Fahl and Stein, 1998). Microscopical studies (maceral analysisl palynology), however, allow a direct visual inspection of the particulate organic matter and allow to differentiate particles of different biological sources. Thus, a combination of both methods as shown in this study, yields a more precise identification of organic-carbon sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of particulate organic matter (OM) in Arctic Ocean sediments from the Late Cretaceous to the Eocene (IODP Expedition 302) has revealed detailed information about the aquatic/marine OM fluxes, biological sources, preservation and export of terrestrial material. Here, we present detailed data from maceral analysis, vitrinite reflectance measurements and organic geochemistry. During the Campanian/Paleocene, fluxes of land-derived OM are indicated by reworked and oxidized macerals (vitrinite, inertinite) and terrigenous liptinite (cutinite, sporinite). In the Early Eocene, drastic environmental changes are indicated by peaks in aquatic OM (up to 40-45%, lamalginite, telalginite, liptodetrinite, dinoflagellate cysts) and amorphous OM (up to 50% bituminite). These events of increased aquatic OM flux, similar to conditions favoring black shale deposition, correlate with the global d13C events "Paleocene/Eocene Thermal Maximum" (PETM) and "Elmo-event". Freshwater discharge and proximity of the source area are documented by freshwater algae material (Pediastrum, Botryococcus) and immature land-plant material (corphuminite, textinite). We consider that erosion of coal-bearing sediments during transgression time lead to humic acids release as a source for bituminite deposited in the Early Eocene black shales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While microbial communities of aerosols have been examined, little is known about their sources. Nutrient composition and microbial communities of potential dust sources, saline lake sediments (SLS) and adjacent biological soil crusts (BSC), from Southern Australia were determined and compared with a previously analyzed dust sample. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities of SLS and BSC were different, and these differences were mainly explained by salinity. Nutrient concentrations varied among the sites but could not explain the differences in microbial diversity patterns. Comparison of microbial communities with dust samples showed that deflation selects against filamentous cyanobacteria, such as the Nostocales group. This could be attributed to the firm attachment of cyanobacterial filaments to soil particles and/or because deflation occurs mainly in disturbed BSC, where cyanobacterial diversity is often low. Other bacterial groups, such as Actinobacteria and the spore-forming Firmicutes, were found in both dust and its sources. While Firmicutes-related sequences were mostly detected in the SLS bacterial communities (10% of total sequences), the actinobacterial sequences were retrieved from both (11-13%). In conclusion, the potential dust sources examined here show highly diverse bacterial communities and contain nutrients that can be transported with aerosols. The obtained fingerprinting and sequencing data may enable back tracking of dust plumes and their microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multitracer approach is applied to assess the impact of boundary fluxes (e.g., benthic input from sedi- ments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the d13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indi- cates the presence of an external carbon source, which is traced to the European continental coastline using naturally occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of meta- bolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e., unbuffered) release of metabolic DIC. Finally, long- term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survival of coral planulae, and the successful settlement and healthy growth of primary polyps are critical for the dispersal of scleractinian corals and hence the recovery of degraded coral reefs. It is therefore important to explore how the warmer and more acidic oceanic conditions predicted for the future could affect these processes. This study used controlled culture to investigate the effects of a 1 °C increase in temperature and a 0.2-0.25 unit decrease in pH on the settlement and survival of planulae and the growth of primary polyps in the Tropical Eastern Pacific coral Porites panamensis. We found that primary polyp growth was reduced only marginally by more acidic seawater but the combined effect of high temperature and lowered pH caused a significant reduction in growth of primary polyps by almost a third. Elevated temperature was found to significantly reduce the amount of zooxanthellae in primary polyps, and when combined with lowered pH resulted in a significant reduction in biomass of primary polyps. However, survival and settlement of planula larvae were unaffected by increased temperature, lowered acidity or the combination of both. These results indicate that in future scenarios of increased temperature and oceanic acidity coral planulae will be able to disperse and settle successfully but primary polyp growth may be hampered. The recovery of reefs may therefore be impeded by global change even if local stressors are curbed and sufficient sources of planulae are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.