3 resultados para BIOLOGICAL MARKERS
em Publishing Network for Geoscientific
Resumo:
The aliphatic hydrocarbon distributions obtained from the natural bitumens of three Leg 75 sediments were compared using computerised gas chromatography-mass spectrometry (C-GC-MS). The kerogens isolated from these sediments were heated in sealed tubes at 330°C using the techniques of hydrous (i.e. heating kerogen in the presence of water) and anhydrous pyrolysis (i.e. heating dry kerogen alone). These experiments were then repeated at a lower temperature (280°C). At 330°C, under anhydrous conditions, considerable destruction of biomarkers in the ancient kerogens (i.e. pre-Tertiary) occurred, whereas with water present significant amounts of hopanes were obtained. However, with more recent kerogens (which contain larger amounts of chemically bound water), both anhydrous and hydrous pyrolysis gave a similar suite of biological markers, in which long chain acyclic isoprenoids (C40) are significant components. Lowering the temperature of pyrolysis to 280°C yielded biological markers under both hydrous and anhydrous conditions for all kerogens. n-Alkenes were not detected in any of the pyrolysates; however, a single unknown triterpene was discovered in several of the hydrous and anhydrous pyrolysates. The results tentatively indicate that the chief value to petroleum research of kerogen hydrous pyrolysis lies in its ability to increase the yield of pyrolysate. High temperature hydrous pyrolysis (280-330°C), under high pressure (2000 psi), does not appear to mimic natural conditions of oil generation. However, this study does not take into account whole rock pyrolysis.
Resumo:
Black shales possessing high concentrations of organic carbon (Foresman, 1978, doi:10.2973/dsdp.proc.40.111.1978) were deposited in many parts of the proto South Atlantic Ocean during the Cretaceous period (Bolli et al., 1978, doi:10.2973/dsdp.proc.40.104.1978). The way such sediments accumulated is not fully understood, but is likely to have occurred through a combination of low oxygen availability and abundant supply of organic matter. Thin, centimetre-thick layers of black shales are commonly interbedded with thicker layers of organic carbon-deficient, green claystones, as found in strata of Aptian to Coniacian age, at Deep Sea Drilling Project (DSDP) Site 530, in the southern Angola Basin (Hay et al., 1982, doi:10.1130/0016-7606(1982)93<1038:SAAOOC>2.0.CO;2) and elsewhere. These differences in carbon content and colour reflect the conditions of deposition, and possibly variations in the supply of organic matter (Summerhayes and Masran, 1983, doi:10.2973/dsdp.proc.76.116.1983; Dean and Gardner, 1982). We have compared, using organic geochemical methods the compositions of organic matter in three pairs of closely-bedded black and green Cenomanian claystones obtained from Site 530. Kerogen analyses and distributions of biological markers show that the organic matter of the black shales is more marine and better preserved than that of the green claystones.
Resumo:
The present dataset contains the source data for Figure 2B of Tentner et al. (2012). The data shows the percentage of cultured cell-populations that stained positively and/or negatively for apoptotic markers cleaved caspase-3 and cleaved PARP, following DNA damage treatments induced by various doses of doxorubicin (0, 2 and 10 µmole/L) in the presence (100 ng/mL) or absence (0 ng/mL) of TNF-alpha co-treatment. For the six treatment conditions investigated, cell counts were made by flow cytometry at times 6, 12, 24, and 48 h following treatment; CULTURE DETAILS: U2OS cells were obtained from ATCC were maintained at 21% oxygen and 5% CO2 in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, penicillin, streptomycin, 2mM L-glutamine, and used within 15-20 passages. The first thymidine block was released by washing the plates three times with PBS, and incubating them in fresh thymidine-free media for 12 h. A second thymidine block was then performed by re-addition of thymidine to 2.5 mM followed by incubation for an additional 18 h. Media was aspirated, plates were washed 3 with PBS, and replaced with fresh media in the presence or absence of 10 mM aphidicolin; ANALYSIS DETAILS: See supplementary journal publication; RESULT: The authors of the supplementary journal publication conclude that TNF enhances dose-dependent cell death following doxorubicin-induced DNA damage with minimal affect on dose-dependent cell-cycle arrest.