325 resultados para BIOACID

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing seawater temperature and CO2 concentrations both are expected to increase coastal phytoplankton biomass and carbon to nutrient ratios in nutrient limited seasonally stratified summer conditions. This is because temperature enhances phytoplankton growth while grazing is suggested to be reduced during such bottom-up controlled situations. In addition, enhanced CO2 concentrations potentially favor phytoplankton species, that otherwise depend on costly carbon concentrating mechanisms (CCM). The trophic consequences for consumers under such conditions, however, remain little understood. We set out to experimentally explore the combined effects of increasing temperature and CO2 concentration for phytoplankton biomass and stoichiometry and the consequences for trophic transfer (here for copepods) on a natural nutrient limited Baltic Sea summer plankton community. The results show, that warming effects were translated to the next trophic level by switching the system from a bottom-up controlled to a mainly top-down controlled one. This was reflected in significantly down-grazed phytoplankton and increased zooplankton abundance in the warm temperature treatment (22.5°C). Additionally, at low temperature (16.5°C) rising CO2 concentrations significantly increased phytoplankton biomass. The latter effect however, was due to direct negative impact of CO2 on copepod nauplii which released phytoplankton from grazing in the cold but not in the warm treatments. Our results suggest that future seawater warming has the potential to switch trophic relations between phytoplankton and their grazers under nutrient limited conditions with the consequence of potentially disguising CO2 effects on coastal phytoplankton biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In search of a meaningful stress indicator for Fucus vesiculosus we found that the often used quantitative determination procedures for the polysaccharide laminarin (beta-1,3-glucan) result in different kind of problems, uncertainties and limitations. This chemical long-term storage form of carbon enables perennial brown algae in seasonally fluctuating ecosystems to uncouple growth from photosynthesis. Because of this high ecological relevance a reliable and precise method for determination and quantification of laminarin is needed. Therefore, a simple, cold water extraction method coupled to a new quantitative liquid chromatography-mass spectrometrical method (LC-MS) was developed. Laminarin was determined in nine out of twelve brown algal species, and its expected typical molar mass distribution of 2000-7000 Da was confirmed. Furthermore, laminarin consisted of a complex mixture of different chemical forms, since fifteen chemical laminarin species with distinct molecular weights were measured in nine species of brown algae. Laminarin concentrations in the algal tissues ranged from 0.03 to 0.86% dry weight (DW). The direct chemical characterization and quantification of laminarin by LC-MS represents a powerful method to verify the biochemical and ecological importance of laminarin for brown algae. Single individuals of Laminaria hyperborea, L. digitata, Saccharina latissima, F. serratus, F. vesiculosus, F. spiralis, Himanthalia elongata, Cystoseira tamariscifolia, Pelvetia canaliculata, Ascophyllum nodosum, Halidrys siliquosa and Dictyota dichotoma were collected in fall (18.11.2013) during spring low tide from the shore of Finavarra, Co. Clare, west coast of Ireland (53° 09' 25'' N, 09° 06' 58'' W). After sampling, the different algae were immediately transported to the lab, lyophilized and sent to the University of Rostock. Laminarin was extracted with cold ultrapure water from the algal samples. Before extraction they were ground to < 1 mm grain size with an analytical mill (Ika MF 10 Basic). The algal material (approx. 1.5 g DW) was extracted in ultrapure water (8 mL) on a shaker (250 rpm) for 5 h. After the addition of surplus ultrapure water (4 mL) and shaking manually, 1 mL of the sample was filter centrifuged (45 µm) at 14,000 rpm (Hettich Mikro 22 R). The slightly viscous supernatant was free of suspended material and converted into a microvial (300 µL) for further analysis. The extracts were analyzed using liquid chromatography-mass spectrometry (LC-MS) analysis (LTQ Velos Pro ion trap spectrometer with Accela HPLC, Thermo Scientific). Laminarin species were separated on a KinetexTM column (2.6 µm C18, 150 x 3 mm). The mobile phase was 90 % ultrapure water and 10 % acetonitrile, run isocratically at a flow rate of 0.2 mL min-1. MS was working in ESI negative ion mode in a mass range of 100 - 4000 amu. Glucose contents were determined after extraction using high-performance liquid chromatography (HPLC). Extracted samples were analyzed in an HPLC (SmartLine, Knauer GmbH) equipped with a SUPELCOGELTM Ca column (30 x 7,8 mm without preColumn) and RI-detector (S2300 PDA S2800). Water was used as eluent at a flow rate of 0.8 mL min-1 at 75 °C. Glucose was quantified by comparison of the retention time and peak area with standard solutions using ChromGate software. Mannitol was extracted from three subsamples of 10-20 mg powdered alga material (L. hyperborea, L. digitata, S. latissima, F. serratus, F. vesiculosus, F. spiralis, H. elongata, P. canaliculata, A. nodosum, H. siliquosa) and quantified, following the HPLC method described by Karsten et al. (1991). For analyzing carbon and nitrogen contents, dried algal material was ground to powder and three subsamples of 2 mg from each alga thalli were loaded and packed into tin cartridges (6×6×12 mm). The packages were combusted at 950 °C and the absolute contents of C and N were automatically quantified in an elemental analyzer (Elementar Vario EL III, Germany) using acetanilide as standard according to Verardo et al. (1990).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research full-factorial experiments across seasons in multi-species, cross-trophic level set-ups are essential as they allow making realistic estimations about direct and indirect effects and the relative importance of both major environmental stressors on ecosystems. In benthic mesocosm experiments we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels only had minor effects, warming had strong and persistent effects on grazers which affected the Fucus community differently depending on season. In late summer a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species resulting in overgrowth of Fucus thalli by epiphytes. In fall/ winter, outside the growing season of epiphytes, intensified grazing under warming resulted in a significant reduction of Fucus biomass. Thus, we confirm the prediction that future increasing water temperatures influence marine food-web processes by altering top-down control, but we also show that specific consequences for food-web structure depend on season. Since Fucus vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implicates the loss of key functions and services such as provision of nutrient storage, substrate, food, shelter and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.