3 resultados para BASE-LINE CREATININE

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phyric basalts recovered from DSDP Legs 45 and 46 contain abundant plagioclase phenocrysts which occur as either discrete single grains (megacrysts) or aggregates (glomerocrysts) and which are too abundant and too anorthitic to have crystallized from a liquid with the observed bulk rock composition. Almost all the plagioclase crystals are complexly zoned. In most cases two abrupt and relatively large compositional changes associated with continuous internal morphologic boundaries divide the plagioclase crystals into three parts: core, mantle and rim. The cores exhibit two major types of morphology: tabular, with a euhedral to slightly rounded outline; or a skeletal inner core wrapped by a slightly rounded homogeneous outer core. The mantle region is characterized by a zoning pattern composed of one to several spikes/plateaus superimposed on a gently zoned base line, with one large plateau always at the outside of the mantle, and by, in most cases, a rounded internal morphology. The inner rim is typically oscillatory zoned. The width of the outer rim can be correlated with the position of the individual crystal in the basalt pillow. The presence of a skeletal inner core and the concentration of glass inclusions in low-An zones in the mantle region suggest that the liquid in which these parts of the crystals were growing was undercooled some amount. The resorption features at the outer margins of low-An zones indicate superheating of the liquid with respect to the crystal. It is proposed that the plagioclase cores formed during injection of primitive magma into a previously existing magma chamber, that the mantle formed during mixing of a partially mixed magma and the remaining magma already in the chamber, and that the inner rim formed when the mixed magma was in a sheeted dike system. The large plateau at the outside of the mantle may have formed during the injection of the next batch of primitive magma into the main chamber, which may trigger an eruption. This model is consistent with fluid dynamic calculations and geochemically based magma mixing models, and is suggested to be the major mechanism for generating the disequilibrium conditions in the magma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the context of the overall ecological working programme Dynamics of Antarctic Marine Shelf Ecosystems (DynAMo) of the PS96 (ANT-XXXI/2) cruise of RV "Polarstern" to the Weddell Sea (Dec 2015 to Feb 2016), seabed imaging surveys were carried out along drift profiles by means of the Ocean Floor Observation System (OFOS) of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) Bremerhaven. The setup and mode of deployment of the OFOS was similar to that described by Bergmann and Klages (2012, doi:10.1016/j.marpolbul.2012.09.018). OFOS is a surface-powered gear equipped with two downward-looking cameras installed side-by-side: one high-resolution, wide-angle still camera (CANON® EOS 5D Mark III; lens: Canon EF 24 f/1.4L II, f stop: 13, exposure time: 1/125 sec; in-air view angles: 74° (horizontal), 53° (vertical), 84° (diagonal); image size: 5760 x 3840 px = 21 MPix; front of pressure resistant camera housing consisting of plexiglass dome port) and one high-definition color video camera (SONY® FCB-H11). The system was vertically lowered over the stern of the ship with a broadband fibre-optic cable, until it hovers approximately 1.5 m above the seabed. It was then towed after the slowly sailing ship at a speed of approximately 0.5 kn (0.25 m/s). The ship's Global Acoustic Positioning System (GAPS), combining Ultra Short Base Line (USBL), Inertial Navigation System (INS) and satellite-based Global Positioning System (GPS) technologies, was used to gain highly precise underwater position data of the OFOS. During the profile, OFOS was kept hanging at the preferred height above the seafloor by means of the live video feed and occasional minor cable-length adjustments with the winch to compensate small-scale bathymetric variations in seabed morphology. Information on water depth and height above the seafloor were continuously recorded by means of OFOS-mounted sensors (GAPS transponder, Tritech altimeter). Three lasers, which are placed beside the still camera, emit parallel beams and project red light points, arranged as an equilateral triangle with a side length of 50 cm, in each photo, thus providing a scale that can be used to calculate the seabed area depicted in each image and/or measure the size of organisms or seabed features visible in the image. In addition, the seabed area depicted was estimated using altimeter-derived height above seafloor and optical characteristics of the OFOS still camera. In automatic mode, a seabed photo, depicting an area of approximately 3.45 m**2 (= 2.3 m x 1.5 m; with variations depending on the actual height above ground), was taken every 30 seconds to obtain series of "TIMER" stills distributed at regular distances along the profiles that vary in length depending on duration of the cast. At a ship speed of 0.5 kn, the average distance between seabed images was approximately 5 m. Additional "HOTKEY" photos were taken from interesting objects (organisms, seabed features, such as putative iceberg scours) when they appeared in the live video feed (which was also recorded, in addition to the stills, for documentation and possible later analysis). If any image from this collection is used, please cite the reference as given above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-sheet base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.