2 resultados para Automatic term extraction

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-series sediment traps were deployed for five consecutive years in two distinctively different subarctic marine environments. The centrally located subarctic pelagic Station SA (49°N, 174°W; water depth 5406 m) was simultaneously studied along with the marginal sea Station AB (53.5°N, 177°W; water depth 3788 m) in the Aleutian Basin of the Bering Sea. A mooring system was tethered to the sea-floor with a PARFLUX type trap with 13 sample bottles, which was placed at 600 m above the sea-floor at each of the two stations. Sampling intervals were synchronized at the stations, and they were generally set for 20 days during highly productive seasons, spring through fall, and 56 days during winter months of low productivity. Total mass fluxes, which consisted of mainly biogenic phases, were significantly greater at the marginal sea Station AB than at the pelagic Station SA for the first four years and moderately greater for the last year of the observations. This reflects the generally recognized higher productivity in the Bering Sea. Temporal excursion patterns of the mass fluxes at the two stations generally were in parallel, implying that temporal changes in their biological productivity are strongly governed by a large-scale seasonal climatic variability over the region rather than local phenomena. The primary reason for the difference in total mass flux at the two stations stems mainly from varying contributions of siliceous and calcareous planktonic assemblages. A significantly higher opal contribution at Station AB than at Station SA was mainly due to diatoms. Diatom fluxes at the marginal sea station were about twice those observed at the pelagic station, resulting in a very high opal contribution at Station AB. In contrast to the opal fluxes, CaCO3 fluxes at Station AB were slightly lower than at Station SA. The ratios of Corg/Cinorg were usually significantly greater than one in both regions, suggesting that preferentially greater organic carbon from cytoplasm than skeletal inorganic carbon was exported from the surface layers. Such a process, known as the biological pump, leads to a carbon sink which effectively lowers p CO2 in the surface layers and then allows a net flux of atmospheric CO2 into the surface layer. The efficiency of the biological pump is greater in the Bering Sea than at the open-ocean station.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aimed at year-round recording of the chemical aerosol composition in central Antarctica, an unattended operating aerosol sampler was successfully deployed at the EPICA deep drilling site in Dronning Maud Land (Kohnen Station). Analyses of teflon/nylon filter packs consecutively collected over bi-weekly intervals during the February 2003 to December 2005 period allowed to evaluate seasonal concentration variations of methane sulphonate (MS), Cl-, NO3-, non-sea salt (nss-)SO4**2- and Na+, while NH4+ and mineral dust related ion results remained below detection limits. For MS and nss-SO4**2 distinct late summer maxima around 44 and 200 ng/m**3, respectively, were found, while (total) NO3- showed a broad November maximum of about 52 ng m**-3. In contrast, the highest concentrations of Na+ with peak values of up to 160 ng/m**3 were observed during the winter half year. The seasonality of these species broadly coincided with long-term observations at the coastal Neumayer Station, including surprisingly comparable NO3- levels. However, the biogenic sulphur and sea salt concentrations were lower at Kohnen by typically a factor of 2-3 and 10, respectively. The arrival of sea ice derived sea salt particles at Kohnen could not clearly detected, since even during mid-winter the nss-SO4**2- to Na+ ratio was generally too high to unambiguously identify a sulphur depleted sea salt SO4**2- fraction.