10 resultados para Australian middle class

em Publishing Network for Geoscientific


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The middle-late Campanian was marked by an increase in the bioprovinciality of calcareous microfossil assemblages into distinct Tethyan, Transitional, and Austral Provinces that persisted to the end of the Maastrichtian. The northwestern Australian margin belonged to the Transitional Province and the absence of key Tethyan marker species such as Radotruncana calcarata and Gansserina gansseri has led petroleum companies operating in the area to use the locally developed KCCM integrated calcareous microfossil zonation scheme. The KCCM zonation is a composite scheme comprising calcareous nannofossil (KCN), planktonic foraminiferal (KPF) and benthonic foraminiferal (KBF) zones. This paper presents the definitions and revisions of Zones KCCM8-19, from the highest occurrence (HO) of Aspidolithus parcus constrictus to the lowest occurrence (LO) of Ceratolithoides aculeus, and builds on our previous early-late Maastrichtian study. The presence of a middle-upper Campanian disconformity is confirmed by microfossil evidence from the Vulcan Sub-basin, Exmouth and Wombat plateaus, and the Southern Carnarvon Platform. In the Vulcan Sub-basin and on the Exmouth Plateau (ODP Hole 762C) the hiatus extends from slightly above the LO of common Rugoglobigerina rugosa to above the LO of Quadrum gothicum. On the Wombat Plateau (ODP Hole 761B) it spans from above the LO of Heterohelix semicostata to above the LO of Quadrum gothicum; and in the Southern Carnarvon Platform the disconformity has its longest duration from above the HO of Heterohelix semicostata to above the LO of Quadrum sissinghii. A significant revision of the events which define Zones KCCM18 and 19 was necessary owing to the observation that the LO of Ceratolithoides aculeus occurs below the HOs of Archaeoglobigerina cretacea and Stensioeina granulata incondita and the LO of common Rugoglobigerina rugosa. In the original zonation these events were considered to be coincident.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The benthic stable isotope record from ODP Site 761 (Wombat Plateau, NW Australia, 2179.3 m water depth) documents complete recovery of the middle Miocene delta13C excursion corresponding to the climatic optimum and subsequent expansion of the East Antarctic Ice Sheet. The six main delta13C maxima of the "Monterey Excursion" between 16.4 and 13.6 Ma and the characteristic stepped increase in delta18O between 14.5 and 13.9 Ma are clearly identified. The sedimentary record of the shallower ODP Sites 1126 and 1134 [Great Australian Bight (GAB), SWAustralia, 783.8 and 701 m water depth, respectively] is truncated by several unconformities. However, a composite benthic stable isotope curve for these sites provides a first middle Miocene bathyal record for southwest Australia. The delta18O and delta13C curves for Sites 1126 and 1134 indicate a cooler, better-ventilated water mass at ~700 m water depth in the Great Australian Bight since approximately 16 Ma. This cooler and younger water mass probably originated from a close southern source. Cooling of the bottom water at ~16 Ma started much earlier than at other sites of equivalent paleodepths in the central and western parts of the Indian Ocean. At Site 761, the delta18O curve shows an excellent match with the global sea level curve between ~11.5 and 15.1 Ma, and thus closely reflects changes in global ice volume. Prior to 15.1 Ma, the mismatch between the delta18O curve and the sea level curve indicates that delta18O fluctuations are mainly due to changes in bottom water temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moderately to sparsely nannofossiliferous Neocomian siliciclastics and rich Aptian-Albian nannofossil chalks were cored at two Leg 123 sites on the abyssal plains off northwestern Australia. At Site 765, the basal 70 m of cored section yields questionable Tithonian and Berriasian to early Hauterivian assemblages of moderate diversity containing Cruelellipsis cuvillieri, Tegumentum striatum, Speetonia colligata, and Crucibiscutum salebrosum. The overlying Hauterivianlower Aptian is represented by 140 m of sediments barren of nannofossils. Above this, the remaining 80 m of the Lower Cretaceous section has been assigned to the Rhagodiscus angustus Zone (late Aptian-early Albian in age) and the Prediscosphaera columnata Zone (middle-late Albian in age). Common species include Rhagodiscus angustus, Prediscosphaera columnata, Eprolithus floralis, Eprolithus sp., Chiastozygus litterarius, Rucinolithus irregularis, and Flabellites biforaminis. At Site 766, the Neocomian, represented by 200 m of sediment, yields C. cuvillieri, T. striatum, S. colligata, and C. salebrosum. Within the overlying Aptian-Albian sequence of 80 m, the Rhagodiscus angustus, and P. columnata zones were recognized. The paleobiogeographic patterns and implications are discussed, with special emphasis paid to the bipolar high-latitude distribution pattern of C. salebrosum in the Valanginian-Hauterivian. Biostratigraphically important species are discussed and their occurrence in the Indian Ocean is compared with one from the Tethys and Boreal realms. Two new species, Serbiscutum gaultensis and Eprolithus bettenstaedtii, are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopic data obtained from planktonic and benthic foraminifers were used to study paleoceanographic changes along the northeastern Australian margin from late Miocene (10 Ma) to Holocene time, and to evaluate the influence of these changes on reef growth. The data indicate that variations in surface-water temperatures may have had an important effect on the reef complexes on the Queensland Plateau and possibly off the northeastern Australian margin. Three sites were studied: Leg 21, Site 209 on the eastern edge of the Queensland Plateau, and Leg 133, Site 811 on the western margin, and Site 817 on the lower southern slope of the plateau. Shallow-water bioclasts recovered from Holes 811A and 817A indicate extensive reef growth on the Queensland Plateau during the middle Miocene (before 12 Ma), signifying surface-water temperatures of 20°C or greater. The amount of reefal detritus produced during the late Miocene (10.0-5.2 Ma) decreased progressively, resulting in a reduction in area of the reef complexes. The isotopic data from planktonic foraminifers in these late Miocene age sediments indicate the presence of relatively cool surface waters (16°-19°C), which may have been a major factor contributing to the demise of the reefs on the Queensland Plateau. Surface waters remained cool until the middle Pleistocene (1.2-0.5 Ma), when the surface-water temperature apparently increased to approximately 25°C, recorded both in the isotopic data and by renewed reef growth. This increase occurred simultaneously (within the error of the age model) with the initiation of the Great Barrier Reef. We propose that cooling of surface waters during the early late Miocene contributed to reef decline on the Queensland Plateau, and that subsequent warming of surface waters during the middle Pleistocene promoted the initiation of reef growth on the northeastern Australian margin. Reef development on the Queensland Plateau never recovered to the middle Miocene extent because of a combination of tectonic (accelerated subsidence of the plateau) and paleoceanographic (the cooler surface waters present from the late Miocene throughout the Pliocene) factors. Variations in seafloor d18O appear to be controlled by regional factors, as indicated by the similarity of data from Sites 811 and 817 to those from Site 590 on Lord Howe Rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst production. On the southeast Australian continent, the most pronounced effects of precessional forcing were fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record. The data demonstrate a strong precessionally driven climate variability and thus support the concept that precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Cretaceous and younger sediments dredged from the upper continental slope and canyon walls in the Great Australian Bight Basin between 126° and 136°E broadly confirm the stratigraphy which had been established previously from scattered exploration wells. Late Cretaceous to Early Eocene marine and marginal marine terrigenous sediments are overlain by Middle Eocene and younger pelagic carbonate (fine limestone and calcareous ooze). The samples provide the first evidence of truly marine Maastrichtian sedimentation, with abundant calcareous nannoplankton, on the southern margin of the continent. Other samples of interest include Precambrian sheared granodiorite on the upper slope south of Eyre Terrace, Paleocene phosphatic sediment in 'Eucla' Canyon at 128° 30'E, and terrigenous Early Miocene mudstone at 133° 20' and 134° 50'E. The mudstone is of note as an exception to the uniform pelagic carbonate wackestone and ooze which characterise Middle Eocene and younger sedimentation at all other sites. Fragments of alkali basalt lava of unknown age were recovered in 'Eucla' Canyon. Cores are mostly pelagic calcareous ooze, but those from submarine canyons include terrigenous turbidites.