9 resultados para Australian content
em Publishing Network for Geoscientific
Resumo:
Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.
Radiocarbon dating, sedimentation rate, granulometry and organic carbon content of ODP Leg 182 sites
Resumo:
This data report presents sedimentological (grain size) and geochemical (X-ray diffraction, total organic carbon, accelerator mass spectrometry radiocarbon, and percent carbonate) information obtained from the western transect (Sites 1132, 1130, and 1134) and the eastern transect (Sites 1129, 1131, and 1127) in the Great Australian Bight during Leg 182. The purpose is to quantify changing rates of sediment accumulation and changes in sediment type from the late Pleistocene and Holocene, in order to relate these changes to the well-known sea level curve that exists for this time frame. Ultimately, these data can be used to more effectively interpret lithologic variations deeper in the Pleistocene succession, which most likely represent orbitally forced sea level events.
Resumo:
A principal objective at Site 820, situated on the outer shelf, upper slope of the northeastern Australian continental margin, was to test the relationships between changes in Pleistocene sea level and sedimentary packages produced on a mixed carbonate-siliciclastic continental margin. To this end, we have examined the downcore distribution of grain size, magnetic susceptibility, and calcium-carbonate content throughout Hole 820A and, in particular, the top 35 meters below the seafloor (mbsf). These data are compared with variations in the oxygen-isotope signal defined for the same hole and are interpreted as indicating sea-level oscillations. The distribution of sand, mud, calcium carbonate of the mud fraction and total sample, and magnetic susceptibility during the last 20,000 yr defines the position of a sea-level regression (41,000-18,000 yr B.P.), a lowstand, early (18,000-9,400 yr B.P.) and late transgressions (9400-900 yr B.P.), and a highstand (4900 yr to the present). The regression is seen first in a high-carbonate content peak. Calcium carbonate constituents mainly comprise skeletal carbonate grains, with abundant planktonic and benthic foraminifers, and lime muds. The lowstand is characterized by a maximum abundance of the sand fraction, which contains dominantly skeletal carbonate grains and a minor abundance of lithoclasts. Sand-sized terrigenous sediments are proposed to have bypassed the continental shelf during a lowstand of sea level. Sedimentation rates throughout the regression and lowstand are low (3.0 cm/k.y.). The early transgression, marked by highest values in magnetic susceptibility, displays a rapid increase in sedimentation rate that coincided with an increase in terrigenous mud. Highest sedimentation rates of 82.3 cm/k.y. occurred during the late transgression, with increasing percentages of lime-mud. A decrease in noncarbonate constituents in the mud fraction during the late transgression and highstand of sea level is thought to be the result of restricted inner-shelf sedimentation of terrigenous sediments. The same relationship is also seen in the major sea-level oscillation, which is interpreted as isotope stage 6.
Resumo:
At Sites 1130 and 1132 of Ocean Drilling Program Leg 182 in the Great Australian Bight, we recovered an expanded Pleistocene section dominated by packstone and wackestone, deposited at unusually high rates of >20 cm/k.y. Shipboard observations detected an intermittent meter-scale alternation of light gray intervals with olive-gray intervals. Meter-scale samples were collected from the upper 250 m at both sites and decimeter-scale samples from four selected 2.5- to 4.0-m intervals in order to determine the texture and composition of sediments deposited along the upper slope throughout the Quaternary. Detailed textural and compositional data are presented from a total of 540 samples collected from both sites. Results indicate a general coarsening upward at both sites, with an accompanying upcore increase in high-Mg calcite (HMC) and aragonite and a decrease in low-Mg calcite (LMC). Samples collected at decimeter-scale intervals substantiate that the alternating light gray and olive-gray units detected on board ship are lithologically distinct. Light gray units consist of an LMC-rich silt, whereas olive-gray units consist of an aragonite and HMC-rich sand and silt. Sediment sources as well as timing and controls of this cyclic depositional pattern will be the subject of further investigations.