2 resultados para Attentional focus
em Publishing Network for Geoscientific
Resumo:
Late Neogene biostratigraphy of diatoms has been investigated from two sites occupied during Ocean Drilling Program (ODP) Leg 186 off the coast of northeast Japan. A unique aspect of ODP Leg 186 was the installation of two permanent borehole geophysical observatories at the deep-sea terrace along the Japan Trench. The Neogene subsidence history of the forearc was documented from both Sites 1150 and 1151, and Quaternary to middle Miocene (16 Ma) sediments represent a nearly continuous stratigraphic sequence including numerous ash records, especially during the past 9 m.y. Diatoms are found in most samples in variable abundance and in a moderately well preserved state throughout the sequence. The assemblages are characterized consistently by age-diagnostic species of Denticulopsis and Neodenticula found in regions of high surface water productivity typical of middle to high latitudes. The Neogene North Pacific diatom zonation divides the Miocene to Quaternary sequences fundamentally well, except that the latest Miocene through early Pliocene Thalassiosira oestrupii Subzone is not applicable. Miocene and late Pliocene through Pleistocene diatom datum levels that have been proven to be of great stratigraphic utility in the North Pacific Ocean appear to be nearly isochronous within the level of resolution constrained by core catcher sample spacing. The taxonomy and stratigraphy of previously described species determined to be useful across the Miocene/Pliocene boundary have been investigated on the basis of the evolutionary changes within the Thalassiosira trifulta group. The biostratigraphically important forms belonging to the genus Thalassiosira have been illustrated with scanning electron micrographs.
Resumo:
Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.