12 resultados para Astroparticle Physics

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the German Antarctic Expedition 1979/80, the sea ice conditions in the Weddell Sea were studied along the ice shelf between Cape Fiske (root of the Antarctlc Peninsula) and Atka Bay. Most intensively was the sea ice investigated in an area about 100 km northwest of Berkner Island, where a suitable site for the German station was found. In addition to the drift conditions, ice thickness as weIl as temperature and salinity of the ice were measured and the mechanical properties established. Several ice cores were taken back to Germany, where the compressive strength was measured in respect to strain rate, salinity, depth and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical relationships between physical properties determined non-destructively by core logging devices and calibrated by carbonate and opal measurements determined on discrete samples allow extraction of carbonate and opal records from the non-destructive measurements in biogenic settings. Contents of detrital material can be calculated as a residual. For carbonate and opal the correlation coefficients (r) are 0.954 and ?0.916 for sediment density, ?0.816 and 0.845 for compressional-wave velocity, 0.908 and ?0.942 for acoustic impedance, and 0.886 and ?0.865 for sediment color (lightness). Carbonate contents increase in concert with increasing density and acoustic impedance, decreasing velocity and lighter sediment color. The opposite is true for opal. The advantages of deriving the sediment composition quantitatively from core logging are: (i) sampling resolution is increased significantly, (ii) non-destructive data can be gathered rapidly, and (iii) laboratory work on discrete samples can be reduced. Applied to paleoceanographic problems, this method offers the opportunity of precise stratigraphic correlations and of studying processes related to biogenic sedimentation in more detail. Density is most promising because it is most strongly affected by changes in composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.